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GLORIA JOAN BULLOCK. 

Bcl-2 BLOCKS ARA-C-INDUCED APOPTOSIS BUT NOT ARA-C-INDUCED DNA 
DAMAGE IN HUMAN ACUTE MYELOID LEUKEMIA CELLS. 

Under the direction of Kapil N. Bhalla, M.D. Division of Hematology/Oncology, Medical 
University of South Carolina, Charleston, SC and Winship Cancer Center, Emory University, 
Atlanta, GA. 

High expression of p26Bcl-2 in patient-derived AML cells has been associated with poor 

response to chemotherapy including Ara-C. It has been well established that Bcl-2 

overexpression blocks apoptosis or programmed cell death induced by a wide variety of stimuli 

including chemotherapeutic drugs. However, the exact mechanism of action of Bcl-2 in 

promoting this blockade is still largely unknown. To determine the types of Ara-C-induced DNA 

damage with which Bcl-2 specifically interferes, HL-60/neo and HL-60IBcl-2 cells were created 

via retroviral-mediated transfection of the bcl-2 gene. These transfectants served as in vitro 

AML cell models that expressed different levels of p26Bcl-2. The clone with the highest Bcl-2 

levels contained 5- to IO-fold greater Bcl-2 by Western blot and immunofluorescence as 

compared to HL-60/neo cells. HL-60/Bcl-2 cells are resistant to Ara-C-induced apoptosis, which 

was evident in HL-60/neo cells as internucleosomal and high molecular weight DNA 

fragmentation, as well as by the activation of the cysteine protease cascade of apoptosis. 

Differences in apoptosis in the two cell types was correlated with differences in the loss of cell 

viability as measured by the MTT (3-[3,5-dimethylthiazol-2-yl]-2,5-diphenyltetrasolium 

bromide) assay. Proximal steps in Ara-C metabolism including intracellular accumulation of 

Ara-CTP relative to dCTP, Ara-C DNA incorporation, Ara-C-induced DNA strand breaks (by 

the alkaline elution assay) and Ara-C-induced inhibition of DNA synthesis (by measurement of 

CH]-TdR incorporation), were not significantly different between HL-60/neo and HL-60IBcl-2 

cells. Bcl-2 expression was studied in cells surviving over time after Ara-C treatment. Various 

clones of HL-60/Bcl-2 cells were generated by limiting dilution of transfected HL-60/Bcl-2 cells. 

Regardless of their endogenous Bcl-2 levels, following Ara-C treatment, the non-apoptotic 

(surviving) cells of various clones exhibited further transcriptional up-regulation of bcl-2 mRNA 

and p26Bcl-2 levels detected by RNase protection assay, and Western blot analysis or flow 

cytometry, respectively. HL-60/neo cells that had survived the initial Ara-C treatment were 

exposed to a second dose of Ara-C, to determine whether the induction in the Bcl-2 levels in 

these cells were biologically relevant. This was confirmed by demonstrating a reduced 
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reduced cytotoxicity of the second dose of Ara-C by the MTT assay. Whether increased Bcl-2 

levels in HL-60IBcl-2 cells promote increased repair of non-lethal Ara-C-induced DNA damage 

was also addressed. Following Ara-C treatment, HL-60/neo as well as HL-60IBcl-2 cells 

exhibited equivalent rates of repair of non-lethal DNA damage, as assessed by the comparisons 

of unscheduled DNA synthesis, and assessment by PCR of the repair of the damage of the c-myc 

genomic DNA template. Therefore, these data indicate that while Bcl-2 does not block early 

steps of Ara-C metabolism, Ara-C-induced DNA damage or its repair, it does block the induction 

of Ara-C-induced apoptosis by inhibiting the conversion of Ara-C-induced early and potentially 

reparable DNA damage into lethal DNA fragmentation characteristic of apoptosis. 
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GLOSSARY OF TERMS AND ABBREVIATIONS USED: 

AML: acute myeloid! myelogenous leukemia 
Ara-CDP: arabinoside cytosine diphosphate (a metabolite of Ara-C) 
Ara-CMP: arabinoside cytosine monophosphate (a metabolite of Ara-C) 
Ara-CTP: arabinoside cytosine triphosphate (lethal metabolite of Ara-C) 
Ara-UMP: arabinoside uridine monophosphate (breakdown metabolite of Ara-C) 
A TP: adenosine triphosphate 
blast(s): immature blood cell(s) of the bone marrow which can exhibit deregulated proliferation of 
malignant. 
blast crisis: severe accelerated (acute) phase ofCML in which the proportion of blasts in the blood 
and bone marrow may exceed 50 to 90 percent of the cells (Williams' Hematology, 5th edition, 
1996). 
bp: base-pair size of nucleotide sequences 
BrdU: bromodeoxyuridine 
BSA: bovine serum albumin 
BSO: buthionine sulfoxamine 
CAT: chloramphenicol acetyltransferase, a gene used in recombinant DNA techniques as a reporter 
for gene promoter activity 
CD: "cluster designation:, indicating specific surface antigens on blood and bone marrow cells, 
usually given a numerical assignment 
CFU-GEMM: hematopoietic ~olony-forming ynit which has the potential to form &ranulocytic, 
~rythroid, monocytic, and megakaryocytic populations (See Figure 6) 
CML: chronic myeloid! myelogenous leukemia 
CPT: camptothecin 
DAG: diacylglyceride 
EDT A: ethylene diamine tetraacetic acid 
ELISA: enzyme-linked immunosorbent assay 
ER: enodoplasmic reticulum 
(Fab')l: pair of antigen binding-sites in immunoglobulin light chains 
Fc: easily crystallizable fragment of immunoglobulin heavy chains, which contains the antigenic 
markers for the heavy chain 
FIGE: field-inversion gel electrophoresis 
FITC: fluorescein isothiocyanate 
S-FU: 5- fluorodeoxyuridine 
G-CSF: granulocyte colony stimulating factor 
GF: growth factor 
GM-CSF: granulocyte-macrophage colony-stimulating factor 
HCI: hydrochloride 
HeLa: human epithelioid cervical carcinoma cell line 
UIDAe: high-gose Ara-C = 100 J.lM I-p-D-arabinofuranosylcytosine treatment for 4 hours, which 
corresponds to clinically achievable doses and effective peak plasma concentrations of Ara-C for 
leukemia patients. 
HPLC: high performance liquid chromatography 
ICE: Interleukin-l J3-converting enzyme 
IL: Interleukin family of cytokines, given numerical designations 
JNK: Jun N-terminal kinase, related to MAPK 
KS62: human CML blast crisis cell line 
kB: kilobase size of nucleotide sequences 
KB: human oral epidermoid carcinoma cell line 
kDa: kilodalton size/ molecular weight of protein 
KG-I: human acute myeloid leukemia cell line 
LTR: long terminal repeat sequence(s) of retroviruses which drive transcription of pro viruses upon 
integration into host genome 

xii 
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lymphoid: term relating to those hematopoietic precursor cells whose fmal maturation takes place 
within lymph nodes and tissue prior to circulation in the peripheral blood. Includes precursors of, as 
well as, mature T - and B- lymphocytes. (See Figure 6.) 
MAP(K): mitogen-activated protein kinases 
M-CSF: macrophage colony-stimulating factor 
mdr: multidrug resistance 
ML-l: human myeloid leukemia cell line 
MTT: 3-(3,5-dimethylthiazol-2-yl)-2,5-diphenyltetrasolium bromide, a colored salt used to detect 
viable mitochondrial enzymes in cells treated with cytotoxic drugs. 
myeloid: term relating to those hematopoietic precursor cells whose final maturation takes place 
within bone marrow prior to circulation in the peripheral blood. Includes precursors of, as well as, 
mature granulocytes, monocytes, erythrocytes, megakaryocytes, and platelets. (See Figure 6.) 
ND: "not determined" at present 
neo: neomycin resistance gene 
NPC: nuclear pore complex 
NTP: nucleotide triphosphate 
OVCAR-3: human ovarian carcinoma cell line 
PCD: programmed cell death 
PI: propidium iodide 
PKC: protein kinase C 
pol: (DNA) polymerase 
pSFFV: useful recombinant plasmid containing components of the spleen focus-forming virus 
rads: ionizing radiation unit corresponding to the absorption of energy of 100 ergs/g 
RSV: Rous sarcoma virus 
RT -PCR: reverse-transcription polymerase chain reaction 
~: "sigma" = sum in statistical formulas 
SAPK: stress-activated kinase, related to MAPK 
SCID: severe combined immune deficiency 
SEM: standard error of mean 
TdR: thymidine 
TPO: thrombopoietin, a stimulator of platelet formation 
V: volts 

SYMBOLS FOR AMINO ACIDS: 

A = Alanine (Ala) M = Methionine (Met) 
B = Asparagine/ Asparatic acid (Asx) N = Asparagine (Asn) 
C = Cysteine (Cys) P = Proline (pro) 
D = Aspartic acid (Asp) Q = Glutamine (Gin) 
E = Glutamic acid (Glu) R = Arginine (Arg) 
F = Phenylalaine (Phe) S = Serine (Ser) 
G = Glycine (Gly) T = Threonine (Thr) 
H = Histidine (His) V = Valine (Val) 
I = Isoleucine (lie) W = Tryptophan (Trp) 

K = Lysine (Lys) Y = Tyrosine (Tyr) 
L = Leucine (Leu) Z = Glutamine/ Glutamic acid (Glx) 

(from Stryer L, Biochemistor, third edition. New York: WH Freeman, 1988) 
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CHAPTER I: INTRODUCTION: 

A. Apoptosis. 

The balance between cell proliferation and cell death is of critical importance in the biologic 

homeostasis of normal and cancerous tissues. The regulation of cell death is as complex as the 

regulation of cell proliferation. Apoptosis, or programmed cell death, is a distinctly active gene­

directed form of physiological cell death which differs fundamentally and biochemically from 

the other form of cell death such as classically defined pathological process of cell necrosis 

(reviewed in 1). 

I. Distinction from necrosis. 

Cell necrosis has been described as an "accidental" cell death (2) which occurs in response to 

a wide variety of noxious stimuli, injury including hyperthermia, hypoxia, ischemia, complement 

attack, metabolic poisons, direct cell trauma, and exposure to toxins and highly toxic levels of 

drugs (reviewed in 2,3). A cell undergoing necrosis exhibits characteristic morphologic and 

biochemical changes which have been extensively described. Early abnormalities include gross 

swelling of the cytoplasm and organelles such as the endoplasmic reticulum and mitochondrial 

matrix (2-4). Nuclear chromatin initially condenses, becoming slightly pyknotic (3). However, 

as cell necrosis progresses, the nuclear, organelle, and plasma membranes rupture, causing cell 

contents to leak out into the extracellular space (2), and marginated nuclear chromatin masses 

are eventually dispersed, leaving a nuclear "ghost" when stained (karyolysis) (3). Early loss in 

membrane integrity and ion-pumping capabilities may be responsible for the tremendous cellular 

swelling (2, 3), and further disruptions of membranes are caused by the resulting extreme Ca2+ 

and other ion imbalances (3, 5). During the late stages of necrosis, ruptured lysosomes release 

hydrolytic enzymes which cause rapid cellular disintegration (2, 3), as well as digestion of DNA 

into diffuse fragments of various sizes (6). Fluctuations in DNA, RNA, and protein levels 

rapidly occur (2, 4). Cell necrosis usually occurs in tracts of contiguous cells, and typically 

elicits an exudative inflammatory reaction in adjoining tissue (3). The released cellular debris is 

then ingested and degraded by phagocytosis (3). 
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2. Definition of programmed cell death, apoptosis and its characteristics. 

In contrast, apoptosis is described as a morphologically distinct "spontaneous" form of cell 

death that occurs in many different tissues exposed to various conditions. Named from the 

ancient Greek word U1t01t'toO'tO', describing the "falling off' as petals from flowers or leaves 

from trees, apoptosis characteristically occurs in scattered single cells (2, 3), and is a corollary of 

the concept of programmed cell death (7). Programmed cell death is defined as a functional state 

in development (7), or an internal suicide program which plays a crucial role in widespread 

physiological processes including embryogenesis, normal adult tissue turnover, organ atrophy, 

and the immune response (7). The type of cell death utilized in these important natural 

circumstances is virtually that of apoptosis. Apoptosis, however, can also be induced by external 

non-physiologic stimuli. 

Table I summarizes the morphologic and biochemical differences between apoptosis and 

more disorganized cell necrosis. The early stages of apoptosis consist of cell shrinkage, 

chromatin condensation, nuclear disintegration, cell surface blebbing, and the appearance of 

membrane-bound apoptotic bodies (3, 8). The dilated endoplasmic reticulum forms vesicles 

which fuse with the plasma membrane, causing the cell's outline to become deeply convoluted 

(2). Cell shrinkage is associated with the resulting loss of intracellular fluid and ions. Other 

detectable biochemical changes occurring in cells undergoing apoptosis include a rapid and 

sustained increase in intracellular Ca2+ levels (2). This increase has been measured in 

thymocytes induced to undergo apoptosis by the addition of glucocorticoids or Ca2+ ionophores 

(9), and has recently been attributed to gradual loss of Ca2+ from the endoplasmic reticulum and 

rise in Ca2+ amounts in the mitochondria associated with the onset of apoptosis in growth-factor 

dependent cells deprived of lymphokine (10). Most recently, another biochemical change 

associated with the induction of apoptosis in Interleukin (IL )-2-dependent cytotoxic T­

lymphocytes is intracellular acidification as a result of a modulated set-point in an intact 

Na+/H+-antiporter (11). Plasma membrane integrity persists, however, and the cell breaks up 

into several membrane-bound apoptotic bodies which enclose nuclear fragments and/or 

structurally intact cytoplasmic organelles (2, 3). These apoptotic bodies protrude from the cell 

and are typically phagocytosed by nearby cells such as macrophages in the absence of an 

exudative inflammatory reaction. It has been recently described that the stimulus for this 
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phagocytic process is the increased expression of vitronectin on the surface of the apoptotic 

bodies and its recognition by macrophages via the vitronectin receptor, CD36 (12). 

In contrast to cell necrosis, the process of cellular fragmentation in apoptosis occurs 

extremely rapidly, within several minutes to hours after exposure to an apoptotic stimulus (2) 

and culminates in a distinct order of events. Once the apoptotic pathway is engaged, a 

significant manifestation of apoptosis first described by Wyllie (13) is the fragmentation of 

genomic DNA into integer multiples of nucleosome-sized (approximately 180-200 base pairs) 

units. In the early literature, this was reportedly accomplished by the activation of a putative 

non-lysosomal Ca2+/Mg2+-dependent endonuclease which cleaves at the linker DNA between 

DNA-histone octamers (13). The generation of this specific "ladder" of internucleosomal DNA 

fragmentation has been historically described as the biochemical hallmark of apoptosis, and is 

easily appreciated by standard agarose gel electrophoresis of DNA. The putative 

endonuclease(s) responsible for this fragmentation, however, have not yet been unequivocally 

isolated, due to its attributed scarcity and lability (14). Recently, Peitsch et al. characterized this 

endonuclease extracted from isolated rat thymocyte nuclei as identical, functionally and 

immunohistochemically, to deoxyribonuclease I (DNase I) (14). However, Brown et al. first 

reported the additional cleavage of DNA in apoptotic thymocytes into high molecular weight 

fragments ranging from 50 to 300-kb in size; this type of fragmentation, resolved by pulsed-field 

and field-inversion gel electrophoresis techniques, and suggests that another key enzyme or 

endonuclease may also playa role in the induction of apoptosis (15-17). It is presently not yet 

clear whether high molecular weight fragmentation precedes induction of low molecular weight 

fragmentation fragmentation in the progression of apoptosis, whether high molecular weight 

fragmentation is required in all situations, or which endonuclease(s) are universally responsible 

for either of these types of irreversible DNA fragmentation. 

3. Occurrence and mediators of apoptosis. 

Programmed cell death has been observed in diverse organisms from nematodes such 

Caenorhabditis elegans (18) to humans. In humans, apoptosis has been documented to be 

induced in embryonal development during mesonephric regression and interdigital web loss; in 

hormonal regulation in the endometrium, breast, and prostate; in the regulation of inflammation; 

in the regulation of immunity in the selection of mature immune cells, T cell effector 

mechanisms; in AIDS as the mechanism by which the human immunodeficiency virus (HIV) 
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depletes CD4+ cells; and in neoplasia in the regulation of tumor growth rate (reviewed in 19). 

Apoptosis is induced by growth-factor withdrawal in factor-dependent cells, as well as by loss of 

matrix attachment (20). Despite engagement of apoptosis as the mode of cell death in normal 

physiologic processes, this internal cell suicide program can be induced when cells become 

damaged (2, 19). Of note, clinically achievable doses of several anticancer drugs have been 

shown to induce apoptosis in target cells (21). In myeloid leukemia cells, Ara-C (to be described 

later) has been shown to induce internucleosomal DNA fragmentation and apoptosis (22, 23), as 

do taxol (24) and mitoxantrone (25), to name a few. How these chemotherapeutic agents may 

stimulate this cell death program is the focus of intense investigations of the physiologic 

mechanisms of apoptosis in normal and neoplastic cells. 
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TABLE I: CHARACTERISTICS OF CELL NECROSIS VERSUS APOPTOSIS: (refs 3, 7, 8) 

Characteristic: CELL NECROSIS; 

Biochemical features • Evoked by nonphysiological 
disturbances 

• Loss of regulation of 
ion homeostasis 

• No requirement for energy or 
macromolecular synthesis 

Nuclear biochemical • Random diffuse degradation 
features of DNA 

Membrane integrity • Early loss of membrane integrity, 
early inclusion of dyes 

Morphologic features • Death of cell groups 
• Cytoplasmic and organelle swelling 

• Clumpy, ill-defined aggregation 
of chromatin, pyknosis 

• Lysosome leakage 

Pathologic response • Significant inflammatory 

• Phagocytosis by macrophages 

APOPTOSIS; 

• Induced by physiological 
stimuli and mild injury 

• Tightly regulated process 
with activation step 

• Possible requirement for 
energy and/or macromolecular 
synthesis 

• Nonrandom high molecular 
weight DNA fragmentation 
(5-300 kB size) 

• Nonrandom intemucleosomal 
fragmentation of DNA into 
lS0-200-bp units 

• Membrane blebbing, but 
no loss of integrity; 
early exclusion of dyes 

• Deletion of single cells 
• Cell shrinkage; formation 

of apoptotic bodies 
• Condensation of chromatin 

into dense masses 
• Lysosomes intact 

• No inflammatory response 
response 

• Phagocytosis by adjacent 
normal cells and some 
macrophages 

6 
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4. Genes which regulate apoptosis. 

Several genes have been implicated in the regulation of apoptosis. Much of the current 

knowledge about specific cell death genes has been derived from genetic studies in the nematode 

C. elegans (18). Fourteen different genes have been isolated, in which mutations have been 

demonstrated to affect specific stages of programmed cell death in this organism (26). Three 

genes, ced (~ll death defective)-3, ced-4, and ced-9, have been shown to affect the execution of 

the cell death program; ced-3 and ced-4 function to promote cell death, while ced-9 functions to 

prevent cell death (26). The ced-3 gene encodes a protein that is similar to the family of cysteine 

proteases in mammalian cells which convert some pro-enzymes to their active forms (26, 27), 

and includes interleukin-l ~converting enzyme (ICE) (27, 28) and nedd-2IIch-1 (29). 

Overexpression of ced-3, ICE, or Nedd-2IIch-1 in mammalian cells causes apoptosis (30, 31). 

ICE specifically cleaves proteins at Asp-X bonds (X is any amino acid), similar to granzyme B, a 

serine protease responsible for apoptosis induced by cytotoxic T lymphocytes in target cells (27, 

32), and suggests that, in some instances, proteolytic processing of inactive proteins to their 

active states may be required for the induction of apoptosis. However, it has also been shown by 

Kuida et al. that ICE-deficient (-/-) mice are not necessarily protected from apoptosis. 

Thymocytes from ICE (-/-) mice were found to still be sensitive to apoptosis induced by 

dexamethasone or ionizing radiation (33), suggesting that ICE itself may not be a universal 

regulator of apoptosis in mammalian cells. Instead, other newly discovered members of the ICE 

family may be involved in the apoptotic pathway engaged in lymphocytes as well as other bone 

marrow cells. These include ICE homolog CPP32N ama and members of a putative irreversible 

protease cascade culminating in the activation of DNA fragmentation, as demonstrated in the 

most recent literature exploring the effectors of apoptosis (34). These possibilities will be 

discussed in greater detail in Chapter Six of this dissertation. 

Other genes which promote apoptosis have also been identified in the immune system. The 

Apo-llFas gene encodes the Fas ligand (FasL), a cell surface molecule which is a member of the 

tumor necrosis factor family. When FasL, expressed predominantly in activated T cell, binds to 

its receptor Fas, it is capable of inducing apoptosis in various Fas-bearing target cells (35). The 

Fas-FasL system is involved in cytotoxic T lymphocyte (CTL)-mediated immunity, as well as 

down-regulation of immune responses (35). The cytoplasmic domain of FasL consists of 70 

amino acids which are highly conserved with the TNF receptor Rl, and are necessary and 
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sufficient for the transduction of the apoptotic signal (35, 36). The apoptotic pathway(s) induced 

by the FaslFasL system remains to be elucidated. It is known that cell death induced by Fas does 

not require the presence of a nucleus, or DNA fragmentation (34); this process does not require 

macromolecular synthesis (37) and is independent of extracellular Ca2+ (38). And although Fas 

and TNF-Rl share conserved regions with each other, as well as with newly identified death 

effectors TRADD (39), F ADD (40), and RIP (41, 42), there is evidence that Fas-induced death is 

not blocked by many inhibitors of TNF-Rl-transduced apoptosis (35). Therefore Fas-mediated 

apoptosis is an intriguing system still under investigation. 

Many important oncogenes are also reported to regulate apoptosis. The proto-oncogene c­

myc encodes for a protein which contains many domains similar to known transcription factors 

(43). c-myc has been implicated in the control of proliferation of many cells, including normal 

and leukemic bone marrow progenitor cells (43). Expression of c-myc has been shown to 

decrease as cells terminally differentiate (44, 45). However, overexpression of c-myc in serum­

starved fibroblasts has been shown to induced apoptosis in these growth limiting conditions (43), 

as well as in other specific settings which include growth-factor deprivation (46, 47). These data 

indicate that c-myc has a proliferative function as well as an apoptotic function, the balance of 

which is significant in cancer biology. 

The tumor suppressor gene p53 encodes a nuclear phosphoprotein, which in its wild-type 

form (wt-p53) can inhibit cell cycle progression (48, 49). wt-p53 is a sequence-specific 

transcription factor which functions at the G t checkpoint control of the cell cycle to inhibit 

progression of cells into S phase (48). wt-p53 is induced by a post-transcriptional mechanism 

after DNA damage by a wide variety of agents including ionizing radiation (48). wt-p53 can 

suppress growth of cells which have incurred DNA damage through the action of several 

transcriptionally-activated p53-responsive genes. These include GADD45 (growth-arrest and 

DNA damage) (50), and p21 (WAFlICIP1, wild-type p53-activated fragmentl~dk-interacting 

12rotein 1) (51). This gives cells the opportunity to repair damaged DNA templates before the 

resumption of proper DNA replication (48, 52). p53 also induces the mdm2 gene, whose product 

conversely blocks p53 function in a feed-back loop which may govern the length of G t arrest in 

response to DNA. damage (48, 53). For cells already in S-phase, however, the components of 

this global checkpoint may not be as necessary to induce S-phase arrest (54). Fibroblasts with 
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stable expression of mutant p53 do not show induction of p21 WAFlICIPl, but still show reduction 

in rate of DNA synthesis in cells already in S in response to bleomycin or ionizing radiation (54). 

In addition, S phase arrest induced by cytosine arabinoside (Ara-C) in ML-l myeloblastic 

leukemia cells is also not associated with changes in p53 protein levels themselves (55). p53 is 

frequently mutated in many human tumors (48, 56). wt-p53 also has the ability to induce 

apoptotic cell death, while mutant p53 fails to enhance apoptosis (57). Yonisch-Rouach et al. 

have demonstrated that when p53-defective hematopoietic cells were transfected with a 

temperature-sensitive p53 mutant (Val 135), that mutated p53 protects against apoptosis, but 

when p53 reverts to the wild-type conformation at the permissive temperature of 32°C, apoptosis 

is readily induced (48, 58). However, this wt-p53 apoptotic activity was not associated with G1 

arrest (59), and therefore represents two potentially separate pathways for p53 function in 

response to various stimuli. wt-p53-mediated apoptosis appears not to be required in normal 

development since p53-null mice develop normally (48). Instead, wt-p53-induced apoptosis may 

be utilized to delete cells which have sustained overwhelming DNA damage yet still retain the 

capacity for further proliferation (48), and has an important impact on drug-induced apoptosis 

(60, 61). wt-p53-mediated apoptosis has been shown to be mediated through the induction of 

the p53-responsive pro-apoptotic bax gene (62-64), to be described later. 

Other oncogenes have been shown to inhibit apoptosis. The t(9;22) chromosomal 

translocation in chronic myelogenous leukemia (CML) yields a fusion gene consisting of the ber 

(break-point cluster region) gene from chromosome 22 and the e-abl tyrosine kinase proto­

oncogene from chromosome 9 (65). The resulting bcr-abl fusion protein possesses increased 

tyrosine kinase activity compared to the normal e-abl protein product, and is considered to be 

responsible for the pathogenesis of CML (66). Evans et al. have demonstrated that transfection 

of the v-abl oncogene suppresses apoptosis upon growth-factor withdrawal in an interleukin-3-

dependent hematopoietic cell line (67). Recently, it has been shown that when antisense 

oligonucleotides down-regulate ber-abl expression in hematopoietic cells, they become more 

sensitive to the induction of apoptosis by growth factor or serum withdrawal (68), as well as 

various chemotherapeutic agents (69), indicating that p210bcr-abl has the ability to inhibit 

apoptosis to a certain extent. 
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This inhibition of apoptosis by specific regulators is crucial to the understanding of normal 

and cancer cell biology. Inhibition of apoptosis by gene products is also seen in the nematode C. 

elegans by the ced-9 gene product, which protects cells that should survive after programmed 

cell death takes place in the development of the nematode (26). It is not known exactly how the 

ced-9 gene product inhibits PCD in nematodes. However, this gene encodes a protein that is 

homologous to the bcl-2 gene product, one of the most significant regulators of cell death to be 

discovered in human cells to date. 

B. Bcl-2. 

The bcl-2 (B-cell lymphomalleukemia-2) gene was first discovered by virtue of its 

involvement in B-cell malignancies whereby t( 14; 18) chromosomal translocations in the 

majority of follicular non-Hodgkin's B-cell lymphomas juxtapose the normal bcl-2 gene from 

chromosome 18 (at 18q21) with immunoglobulin heavy-chain (IgH) enhancer elements at 14q32 

(70, 71). This results in deregulation of the normal bcl-2 gene and overproduction of bcl-2 

mRNAs and protein products (70), and illustrates an explanation for malignant potential in these 

instances. The bcl-2 gene encodes an integral membrane protein which has been localized to the 

nuclear envelope, the endoplasmic reticulum, and the outer mitochondrial membrane (72). 

Because of an alternative splicing mechanism and the utilization of alternative promoters, the 

bcl-2 gene can potentially encode 26kD (p26Bcl-2a) and 22kD (p22Bcl-2J3) proteins (73, 74). 

1. The bcl-2 gene structure. 

The human bcl-2 gene displays a complex gene structure and strategy for expression (for 

summary, please see illustration in Figure 1). The normal bcl-2 gene has a 3-exon structure on 

chromosome 18 (74). As described by Seto et al., the first exon has been found to be 

untranslated, similar to the organization of the c-myc oncogene, homeotic genes of Drosophila, 

and the insulin gene (74), and contains stop codons in all its open reading frames. There exist a 

facultative 220 bp intron I which is variably spliced and a 370-kh intron II. Initiation sites in 

exon II include TAT A plus CAA T boxes, associated with classic promoter elements, and a 

decanucleotide ATGCAAAGCA homologous with immunoglobulin (Ig) variable region 

enhancers. In addition, multiple initiation sites are also found in a GC-rich region in exon I, very 

similar to that of other B-cell lineage active oncogenes c-abl and c-myb. However, the major 
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sites of transcri'ption initiation have been demonstrated to be further upstream of exon I at -1457 

to -1386 base pairs from the open reading frame (designated PI, for major promoter, with the 

former designated P2, for minor promoter), and contain multiple sites for the binding of Sp 1 

polymerase, a general eukaryotic transcription initiation factor (74). More recently, two smaller 

promoter regions have been discovered even farther upstream of the major promoter (PI) (at -

1552 to -1534, and -1611 to -1552 base pairs upstream of the open reading frame, respectively), 

and were found to be responsive to binding by phosphorylated CREB proteins during B cell 

activation (75). As analyzed by Tsujimoto and Croce, the use of these alternate promoters result 

in the transcription of several overlapping mRNAs comprised of exons 111111 or IIIIIII!. To date, 

the 5.5-kb and 3.5-kb mRNA transcripts are the most important, produced by transcription from 

the major promoter and splicing within the first exon and joining to the second exon. The 5.5-kb 

and 3.5-kb transcripts carry two overlapping reading frames, and the open reading frame is not 

interrupted by chromosomal translocation, since the breakpoints are located farther downstream 

at sites which bind helicase, Ku antigen, and ssDNA binding proteins (76). The 5.S-kb mRNA 

spans the 717 nucleotides, that codes for the 239-amino acid Bcl-2a protein with molecular mass 

of 26 kD; the 3.5-kh mRNA is identical except at the carboxy-terminus, and codes for the 205-

amino acid Bcl-2J3 protein with molecular mass of 22 kD. Only the 26 kD Bcl-2a protein 

possesses a 3' hydrophobic region typical of a membrane-spanning segment. In structure­

function studies, this segment has been shown to be partially responsible for the ability of Bcl-2a 

to block apoptosis (77). Bcl-2~, however, has much less activity in blocking apoptosis (77). 

While the function of alternate splicing has significance in neurons and in immunoglobulin genes 

to generate diversity (78), this mechanism is unknown as to its significance in the bcl-2 gene. 

The presence of dramatically different promoters and alternatively utilized exons suggests a role 

in lineage or stage-specific expression of the bcl-2 gene (77). 
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Figure 1: 

Schematic illustration of the hcl-2a transcript which encodes p26Bcl-2a. 
(Bullock, circa. December 1995, after refs 74-82) 

12 

Transcription of the bcl-2 gene is usually initiated at the major promoter Pl. Other promoters 
have been described to reside upstream of PI as well. Negative regulation of bcl-2 transcription 
has been documented to be imposed by WT1 at the PI region, by wild-type p53 at sequences 
downstream of both the major promoter and the minor promoter P2, and another negative 
regulatory region has been described her as well. The open reading frame is 717 nucleotides in 
size and consists of the junction of exons II and III. The bcl-2a open reading frame (ORF) 
includes conserved sequences of the Bcl-2 homology domains BH1, BID, and newly described 
BH3, and ends with a carboxY:-1~rminal hydrophobic sequence which targets p26Bcl-2a to its 
residence in the subcellular membranes described in the text. Chromosomal translocations in 
lymphomas include the nonnal bcl-2 gene since the breakpoints lie further downstream of the 
open reading frame. 
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2. Regulation of bcl-2 gene expression: Indications for transcriptional or post-
transcriptional/translational modifications. 

Recently a negative regulatory element was identified in the hcl-2 gene downstream of 

the major promoter at the -279 to -85 base-pair region (79, 80); this negative regulatory element 

was later found to be responsive to wt-p53, which reduces CAT (chloramphenicol 

acetyltransferase) expression and CAT activity from reporter gene constructs in co-transfection 

experiments (80). In addition, the Wilms' tumor gene WTJ has been found to repress 

transcription of the bcl-2 major promoter PI, with five potential WTl binding motifs 

overlapping the Sp I-binding sites in the promoter region (81). Therefore, the loss of either of 

these tumor suppressor genes in malignant tissues may result in the deregulation of hcl-2 

expression by loss of transcriptional control. A shorter sequence within the negative regulatory 

element (-119 to -84), described as an upstream open reading frame (uORF) was additionally 

found to repress Bcl-2 expression at the translational level as well, since deletions of this uORF 

from CAT reporter gene constructs containing the bcl-2 promoter increased CAT activity in 

various cell lines but not CAT mRNA levels (82). Possible mediators of translational control of 

Bcl-2 are under investigation. 

Binding sites for several transcription factors are found in the bcl-2a sequence by 

computer analysis. Transcription factor sites located upstream of bcl-2a open reading frame 

includes sites for hsp70.2, SpI, Ets-l, and Egr-l. Of further interest, a binding site for the 

Jun/AP-I transcription factor (5'-TGA[G/C]TCA-3') lies downstream of the open reading frame 

of the bcl-2a transcript at + 1305, and two additional homologous sites lie further downstream 

(Bullock, observations). 

Analyses of the bcl-2 gene sequence fail to detect any sequence motifs such as known 

protein kinase sites (Bullock, observations). However, the Bcl-2 protein can be post­

translationally modified, presumably through various protein kinases. May et al. have associated 

hyperphosphorylation of Bcl-2a with suppression of apoptosis by hematopoietic growth factors 

(83, 84). Following protein kinase C activation in murine myeloid factor-dependent FDC-PIIER 

cells by interleukin-3, erythropoietin, and the natural macrocyclic lactone product bryostatin-I, 

which stimulates protein kinase C (PKC), phosphorylation of Bcl-2a occurs on a serine site in 

association with the inhibition of apoptosis by addition of these growth factors to cell culture 
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(84), despite the maintenance of Bcl-2 levels by these treatments. Haldar also reports 

phosphorylation of Bcl-2 on serine by okadaic acid (OKA) and by taxol in lymphoid cells (85). 

However, in contrast to May's findings, phosphorylated Bcl-2 in these conditions was rendered 

unable to suppress apoptosis itself or to prevent lipid peroxidation associated with OKA- or 

taxol-induced apoptosis. In addition, Haldar et al. have also found that taxol induces Bcl-2 

phosphorylation and, subsequently, apoptosis in PC3 prostate carcinoma cells (86). Chen and 

Faller recently demonstrated that the phosphorylation state of Bcl-2 is modulated by inhibition of 

PKC as well as activated p21 Ha-ras in lurkat cells. However, in this state and in this setting, Bcl-2 

was found to be able to block Ras-specific cell death (87, 88). Further clarification of the 

significance of Bcl-2 phosphorylation status for the regulation of drug-induced apoptosis, or its 

relationship to specific pathways induced by different apoptotic stimuli, is therefore essential. 

3. The bcl-2 gene product blocks a final common pathway for apoptosis. 

Vaux et al. first showed that overexpression of bcl-2 prolongs survival of IL-3-dependent 

pre-B cells in vitro upon cytokine deprivation (89). This was then confirmed by Nunez et al. 

when deregulated bcl-2 expression was demonstrated to extend short-term survival of IL-3-

dependent FL5.12 pro-B lymphocytes, as well as IL-3-dependent 320 mast cells and FDe-PI 

promyeloid cells upon growth factor withdrawal. In addition, Borzillo et al. demonstrated that 

Bcl-2 protects an IL-7-dependent pre-B-cell line against apoptosis associated with growth factor 

withdrawal (90). In these cases, Bcl-2 prevented cell death but did not affect cell-cycle 

progression (91). Microinjected bcl-2 has also been demonstrated to selectively rescue 

neurotrophic factor-dependent embryonic neurons from apoptosis upon withdrawal of NGF, 

brain-derived neurotrophic factor, and neurotrophin-3 (92). Furthermore, Bcl-2 suppresses 

apoptosis yet still allows differentiation and development of a multipotent IL-3-dependent cell 

line in the absence of growth factors (93). In addition, Bcl-2 inhibits apoptosis associated with 

terminal differentiation of HL-60 myeloid leukemia cells (94). Also, Bcl-2 levels are regulated 

when neuroblastoma cells are induced to differentiate (95), with a relationship established 

between the level of Bcl-2 and the amount of differentiation of several types of neuroblastoma 

clones. These data are significant since once terminally differentiated from a muitipotent state, 

hematopoietic cells proceed to die by apoptosis after the duration of their life span, and one 
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interesting question In the literature IS whether the differentiation and apoptotic pathways 

overlap. 

Significant studies demonstrate that Bcl-2 blocks glucocorticoid-induced apoptosis in 

human pre-B-Ieukemias (96), and apoptosis induced by multiple chemotherapeutic drugs 

including methotrexate, Ara-C and vincristine in murine lymphoid lines (97) and in pre-B 

leukemias (98). Transfection with a bcl-2 expression vector protects transplanted murine bone 

marrow from adriamycin- and etoposide-induced myelosuppression (99). These studies examine 

low molecular weight internucleosomal DNA fragmentation associated with apoptosis and its 

inhibition by enforced bcI-2 expression. In addition, Bcl-2 inhibits cisplatin- and etoposide­

induced apoptosis in neuroblastoma, and also decreases the incidence of large molecular weight 

DNA fragmentation (5-300 kb) seen by pulsed-field gel electrophoresis also associated with 

apoptosis (100). 

An important question to address, then, becomes which step in the progression of drug­

induced apoptosis is it that Bcl-2 specifically blocks. Recent studies have examined proximal 

events in drug-induced apoptosis. Bcl-2 blocks nitrogen mustard- and camptothecin (CPT)­

induced apoptosis, but still allows early events to occur at comparable intensity (101), including 

CPT-induced DNA single-strand break formation and resealing, as well as cell cycle 

perturbations. Resistance to thymidylate stress by Bcl-2 overexpression was demonstrated to be 

independent of previously established resistance pathways, such as cell cycle inhibition, and 

modulation of thymidylate synthase levels and activity, since early targets are still affected by 5-

fluorodeoxyuridine (5-FU) treatment in control as well as Bcl-2-overexpressing human 

lymphoma cells (102). In addition, it was concluded that Bcl-2 protein inhibits etoposide­

induced apoptosis through effects on events distal to topoisomerase-II-induced DNA strand 

breaks and their repair since parental and Bcl-2-overexpressing mouse B-cells showed little or no 

difference in etoposide-induced DNA damage and repair by alkali unwinding and alkaline 

elution assays (103). Furthermore, Tang et al. showed that Bcl-2 overexpression in 697 pre-B­

leukemia cells blocks taxol-induced apoptosis and DNA fragmentation but still allows equivalent 

microtubular bundling due to taxol as compared to 697-neo cells (104). 
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Bcl-2 has also been documented to block cell death due to positive regulators of apoptosis, 

further suggesting that Bcl-2 interferes distally with a final common pathway culminating in 

apoptosis. Bcl-2 inhibits wt-p53-triggered apoptosis in a v-myc-induced T-cell lymphoma line 

(105). Bcl-2 blocks p53-dependent apoptosis by adenovirus EIA and diverts the activity of p53 

from induction of apoptosis to induction of growth arrest (106). Apoptotic death induced by c­

myc is inhibited by bel-2 (107), and it has been illustrated that c-mye and bcl-2 proto-oncogenes 

can interact cooperatively in tumor progression (108). Another example of interacting anti­

apoptotic oncogenes was recently shown in IL-3-dependent BalF3 and DoHH2 cells. When ber­

abl transfection induced bel-2 expression in these cells, both were demonstrated to cooperate in 

the inhibition of apoptotic cell death due to growth-factor withdrawal (109). In addition, bel-2 

expression in mouse hemopoietic cells lines was demonstrated to cooperate with thermotolerance 

in promoting cell survival against heat-induced cell death, when heat-shock protein expression 

was simultaneously induced (110). 

Bcl-2, therefore, is a central regulator in the suppression of apoptosis, and these diverse 

data suggest that Bcl-2 blocks an important final common pathway leading to apoptotic cell 

death. However, the exact mechanism of action by which Bcl-2 can prevent the progression to 

apoptosis by a variety of stimuli is still under intense investigation. 

4. Speculations on the mechanism of action of Bcl-2. 

4a. Motifs in the hcl-2 seq ueuce. 

As mentioned previously, the biochemical action of Bcl-2 is unknown. Comparison of the 

bcl-2 cDNA and protein sequences with known sequences in computer databases yield no 

significant homologies except for moderate homology with DNA binding viruses such as 

components of Epstein-Barr virus, Dengue virus, Herpes simplex virus, pseudorabies virus, and 

Varicella-Zoster virus. Early studies reported by Cleary et ala showed that Bcl-2 has weak 

homology with the open reading frame of Epstein-Barr virus (EBV) BHRF-l component (111). 

The BHRF-l protein also has a hydrophobic tail, resides in intracellular membranes, and has 

been shown, like Bcl-2, to block apoptosis induced in human and murine hematopoietic cells by 

growth factor deprivation (112, 113). These results suggest that Bcl-2 homo logs could 

contribute to persistent and latent infections in a conducive cellular environment (70). 
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Furthermore, the EBV genome contains additional genes capable of upregulating the human bel-

2 gene in B-cells (114, 115). Of additional interest, Neilan et af. have discovered that the 

LMW5-HL protein of the African Swine Fever virus shares homology with Bcl-2 (70, 116), 

demonstrating another virus which might use this potential mechanism to prevent host cell death 

while replication is attempted (70). 

In addition, computer analysis of the bcl-2a sequence reveals various sequences which are 

homologous to motifs such as iron-sulfur binding region signatures found in ferredoxins, 

mammalian defensins, epidermal growth factor-like cysteine pattern domains, integrin beta chain 

cysteine-rich domain signatures, class I metallothioneins signatures, and a thiolase signature 

(Bullock, observations). Whether these motifs indicate predictions of Bcl-2 mechanism of action 

relating to these homologous functions remains to be addressed. 

4b. Bcl-2 as an antioxidant. 

Examination of the subcellular location of Bcl-2 has indeed provided some possible 

speculations as the function of Bcl-2. Bcl-2 was originally reported to reside in the inner 

mitochondrial membrane (117). However, as previously mentioned, confocal, laser, scanning, 

and electron microscopy, as well as subcellular fractionation studies prove that Bcl-2 resides in 

the nuclear envelope, parts of the endoplasmic reticulum (ER), and outer mitochondrial 

membrane, but not in the plasma membrane (70, 72). These subcellular localizations have 

prompted studies examining the function of Bcl-2 with respect to these locations. For example, 

the localization of Bcl-2 to the mitochondria prompted studies to link Bcl-2 function to an 

influence on oxidative phosphorylation. However, Mah et al. reported that despite Bcl-2-

mediated inhibition of apoptosis In PC 12 rat pheochromocytoma cells induced by Ca2+ 

ionophores or serum deprivation, no difference was appreciated between control and Bcl-2 

overexpressing cells with respect to rise in intracellular free calcium, oxygen consumption, or 

adenosine triphosphate (A TP) concentration (70, 118, 119). Suggestion that Bcl-2 may function 

as an antioxidant first came into the literature by Hockenbery et al., who demonstrated that Bcl-2 

can protect IL-3-dependent FLS.12 cells from hydrogen peroxide- and menadione-induced 

oxidative cell deaths by inhibiting apoptosis due to these agents (120). Bcl-2 overexpression in 

these cells does not prevent menadione-induced oxidative bursts in these cells but suppresses 
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lipid peroxidation in association with inhibition of apoptosis (120). In addition, Kane et al. 

found that when GT1-7 neural cells were treated with buthionine sulfoxamine (BSO) and were 

thus depleted of glutathione (GSH), a tripeptide thiol involved in the protection of cells from 

oxidative injury, intracellular levels of reactive oxygen species (ROS) and lipid peroxides rose 

rapidly (121). Most notably, however, this increase in ROS associated with the induction of 

apoptosis was not seen in identically treated GTI-7 cells previously transfected with bcl-2, nor 

was associated with inhibition of cell death by bcl-2 (121). Recently, Bcl-2 overexpression in 

murine lymphoma cells was also shown to increase intracellular antioxidants such as GSH in 
- . 

response to inhibition of radiation-induced apoptosis (122). Furthermore, Kane et al. found that 

Bcl-2 overexpression in Saccharomyces cerevesiae mutants deficient in Mn2+ -superoxide 

dismutase (SOD) or Cu2+ /Zn2+ -SOD partially rescued the organisms when subjected to 

conditions which required respiratory metabolism (121). It was concluded that Bcl-2 may 

function to scavenge free radicals, bind metals, or ultimately decrease fonnation of superoxide 

by inhibiting transfer of electrons from complexes I-III through dioxygen in the inner 

mitochondrial membrane (121) or at other sites of superoxide generation, such as electron 

transport which can also occur to an extent in the ER and nuclear membranes (120). 

However, Bcl-2 can also inhibit the induction of apoptosis by hypoxia in PC12 ad 7316A 

rat hepatoma cells, which does not generate reactive oxygen species (ROS or ROI) (123, 124), 

and also protects against cell death from anaerobic conditions in lymphoid cells (125). One 

surprising report has suggested that Bcl-2 may be a pro-oxidant instead of an anti-oxidant since 

in E. coli, Bcl-2 expression actually generates ROI and, in murine B-cells, increases SOD 

activity, yet still has the capability of inducing endogenous cellular antioxidants such as reduced 

GSH (126). Taken together, these data suggest that Bcl-2-mediated inhibition of apoptosis 

may be downstream of the detection oxidative state of a cell, and in maintaining cell 

viability, instead indirectly provides cells with the capacity to mount these antioxidant 

responses. 

4c. Bcl-2 and regulation of Ca2
+ flux. 

Since the mitochondria, and to some extent, the ER, are also major sites for the intracellular 

storage of calcium, several other studies have examined a possible link between Bcl-2 function 



www.manaraa.com

20 

2+ 
and Ca homeostasis. As previously mentioned, Bcl-2 has been sho\\'TI to inhibit apoptosis 

2+ 
induced by Ca ionophores in thymocytes (70) as well as in PC 12 neural cells (119). Baffy et 

ale reported that factor withdrawal in IL-3-dependent murine 32D hematopoietic cells induced 
2+ 

apoptosis and was associated with an intracellular shift in Ca levels from the ER to the 
2+ 

mitochondria (10). This Ca repartitioning associated with apoptosis was prevented by Bcl-2 

overexpression in these cells (10), as well as in Bcl-2-overexpressing WE HI 7 .2 cells treated with 

the ER Ca2
+ pump poison thapsigargin (TG) (127). These suggest that by virtue of its 

association with the mitochondrial membrane, Bcl-2 can directly or indirectly affect apoptosis-

related Ca2+ flux, and perhaps, ultimately the putative Ca2+-dependent endonuclease(s) 

involved in the fragmentation of DNA associated with apoptosis as well (70). Other recent 

studies by Distelhorst et ale indicate that while Bcl-2 overexpression in WE HI 7 .2 cells inhibits 

ER Ca2
+ pool depletion associated with apoptosis induced by TG (but not dexamethasone) (128), 

and H20 2 (which generates ROI, and subsequently, intracellular Ca2
+ flux) (129), that Bcl-2-

mediated inhibition of apoptotic cell death is downstream from these events where different 

Ca2+-dependent and -independent apoptotic pathways may converge (128). Furthermore, 

McCormick and Distelhorst have demonstrated that in inhibiting TG-induced apoptosis, Bcl-2 

overexpression enables WEill 7 .2 cells to elicit a stress response which includes up-regulation of 

GRP78, an ER calcium binding protein, and GRP94, of the heat shock protein family (130). 

These present studies serve as insights beginning to distinguish direct versus indirect results of 

intracellular Bcl-2 overexpression. 

While several of the above studies seek to link Bcl-2 function to the implications from its 

subcellular residence, a previous finding that Bcl-2 is still capable of blocking staurosporine­

induced apoptosis in cells lacking mitochondrial DNA (131) has negated the requirement for 

intact mitochondria for the ability of Bcl-2 to block apoptosis. However, a recent finding, that 

mutant U937 cells lacking mitochondrial DNA still exhibit loss in mitochondrial transmembrane 

potential concomitant with the progression of lNFa-induced apoptosis, does not negate 

contribution of mitochondria themselves in the apoptotic process (132). In addition, a study by 

Smets et ale has associated high Bcl-2 overexpression and subsequently high A TP content in 

leukemia and lymphoma cell lines with decreased sensitivity to glucocorticoid-induced apoptosis 

(133). These associations may not necessarily prove that Bcl-2 participates directly in these 
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effects. Taken together, these findings may instead suggest a distally operative role for Bcl-2-

mediated inhibition of apoptosis, which indirectly allows for the mediation of various protective 

responses by the ceIL which include metabo1ic, antioxidant, and Ca2+-related stress responses. 

4d. Bcl-2 and interaction with Ras. 

Preliminary evidence also implicates Bcl-2 In a possible signal transduction pathway to 

regulate apoptosis by its association with R-ras. Fernandez-Sarabia and Bischoff demonstrated 

by using the yeast t\vo-hybrid system. that Bcl-2 binds to R-ras p23, and that both can be co­

immunoprecipitated in human cell extracts (134). The ras gene family are oncogenes which 

have the potential to induce transformation of cells and mediate cell cycle progression (88, 135). 

R-ras, as well as H-ras, belong to a small Mr G-protein group of signal transducers \vhich 

possess OTP-binding activity (t 35). Early reports suggested that Bcl-2 itself was also a GTP­

binding protein (t 35), but in subsequent experiments and under more stringent conditions, Bcl-2 

was unable to bind GTP (134, 136), and this GTP-binding activity was probably due to R-ras 

p23 associated with Bcl-2 (134). Human R-ras encodes a 218-amino acid polypeptide which 

shares 55% identity with H-ras p21 (134), but does not share the oncogenic properties of other 

ras proteins (134). As summarized by Chen and Faller (88), activated p21 Ras
, whose state is 

generated via guanine nucleotide exchange factors including Sos and GDP-relasing factor, 

targets the serine/threonine kinase Raf-l. Raf-l kinase, in turn, stimulates a kinase cascade 

which includes the mitogen-activated protein kinases (MAPK), its precursors, and its PKC­

dependent and -independent targets (88). Activation of Ras by inducible oncogenic Ras in IL-3-

dependent hematopoietic cells has been shown to result in rapid up-regUlation of bcl-2 and bcl-2 

homolog bel-xL, to be described later, but does not affect bcl-2 homolog bax expression, and 

may contribute to the mechanism by which IL-3 and granulocyte-macrophage colony­

stimulating factor (GM-CSF) inhibit apoptosis as they stimulate the Ras pathway (136). As 

mentioned previously, Chen and Faller reported that Bcl-2 is phosphorylated by, yet still protects 

lurkat cells from apoptosis induced by activated ras (p21 Ha-ras), and suppression of protein kinase 

C (87, 88). However, Wang et al. have shown that Bcl-2 can also be co-immunoprecipitated with 

the Ras target Raf-l serine/threonine kinase in 32D.3 cells as well as Sf9 insect cells transfected 

with both Bcl-2 and Raf-l kinase (137). Both proteins individually, when overexpressed, can 

delay onset of apoptosis due to IL-3 withdrawal in 32D.3 cells, and may demonstrate a 
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functional synergy when co-transfected (138). Raf-l does not appear to phosphorylate Bcl-2 

itself during their interaction, and reciprocally, Bcl-2 does not appear to alter the activity of Raf-

1 kinase itself, suggesting that interaction of Bcl-2 with Raf-l-kinase may work to target Raf-l 

to other substrates which regulate apoptosis (139). However, it has been recently demonstrated 

that taxol-induced apoptosis in MCF7 cells is dependent of the presence of Raf-l, and, 

conversely, is associated with cell death (140, 141). Clarification of the biologic significance 

and the universality of Bcl-2 association with the Ras pathway are thus still required. 

4e. Bcl-2 and transport of nuclear proteins. 

Bcl-2 has also been recently shown to affect subcellular trafficking of nuclear proteins which 

may be critical during apoptosis. Bcl-2 overexpression in HeLa cells has been shown to suppress 

apoptosis as well as the amount of cyclin-A-dependent kinases cdc2 and cdk2 translocated to the 

nuclei of these cells associated with the induction of apoptosis by staurosporine~ caffeine, 6-

dimethylaminopurine, and okadaic acid (142). In this case, however, as evidenced by histone HI 

kinase assays, Bcl-2 did not prevent the activation of these cell cycle-dependent kinases (142), 

which are critical steps thought to be required for mitosis as well as the very similar 

chromosomal and cytoplasmic manifestations of apoptosis (142, 143). Bcl-2 overexpression did, 

however, reduce the abundance of cdc2 and cdk2 within the nucleus, and this reduction was 

associated with the inhibition of apoptotic chromatin condensation (142). 

Similarly, Bcl-2 has been shown, by cooperating with c-myc, to inhibit wt-p53-induced 

apoptosis in murine erythroleukemia (MEL) cells, as well as cell cycle arrest, by altering the 

subcellular trafficking of p53 during the normal cell cycle from the cytoplasm to the nucleus 

(144). During a critical period in G" wt-p53 was shown to remain in the cytoplasm of cells co­

transfected with c-myc, bcl-2, and p53, instead of nonnal translocation to the nucleus. These 

data confirm that Bcl-2 can protect cells from wt-p53-induced apoptosis, and suggest that 

addition of c-myc can overcome wt-p53-mediated cell cycle arrest (144). These findings are 

compatible with the localization of Bcl-2 near random pore structures of the outer nuclear 

membrane reminiscent of nuclear pore complexes (72), and indicate a possible role for Bcl-2 in 

the regulation of protein transport across cellular membranes (72, 144). However, Bcl-2 

overexpression has also been shown to block cytoplasmic manifestations of apoptosis in the 
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absence of a nucleus (145), indicating that residence in the nuclear membrane is not an absolute 

requirement for the protective activity of Bcl-2. Bcl-2 may also have a protective function 

during mitosis after nuclear envelope breakdown, given its cytoplasmic residence. By 

fluorescent immunocytochemistry in KB and OV/CAR-3 cells, Willingham has demonstrated a 

concentration of Bcl-2 at the margins of condensed chromosomes during prophase, metaphase, 

and anaphase, and its disappearance from these locations at telophase when the nuclear envelope 

refonns (146). 

Further critique of these theories of Bcl-2 mechanism of action In the context of this 

dissertation will be given in the final discussion Chapter Six. 

5. hel-2-Related Family of Genes. 

In attempts to understand the function of Bcl-2, continued analysis of the bel-2 cDNA and 

protein structure has led to the cloning of several bel-2 related genes. Bel-x is a recently 

identified bcl-2-related gene cloned from chicken lymphoid cells by differential hybridization 

and washing conditions (147). The bel-x gene, like bel-2, utilizes alternative splicing 

mechanisms to generate two distinct bcl-x mRNAs. The larger transcript bel-xL, codes for the 

241-amino acid, 29-31 kD Bel-xL protein, which has 74% homology to Bcl-2 (70). When stably 

transfected into IL-3-dependent murine FLS.12 cells, Bcl-xL was found to inhibit apoptosis due 

to growth factor withdrawal to an equal if not greater extent than Bcl-2 itself (147). Bel-xL 

overexpression was also demonstrated to block apoptosis in U937 cells due to ionizing radiation 

(148), and in neuroblastoma cells due to chemotherapeutic drugs such as cisplatin, 4-HC, and 

VP-16, respectively (149). bel-xL, but not bel-2, expression in murine myeloma cells has been 

associated with their resistance to apoptosis (150). Similar to the ability of Bcl-2, however, Bcl­

xL overexpression has also been shown to rescue WEHI-231 B-Iymphocytes from serum 

deprivation or oxidant-mediated cell death following diverse apoptotic stimuli including 

exposure to y-irradiation, the sphingomyelin ceramide, and compounds which increased 

intracellular levels of oxidants (151). In contrast, the shorter bc/-x transcript, bcl-xS encodes a 

shorter 178-amino acid, p20Bcl-xS protein which lacks the 63-amino acid domain well­

conserved among Bcl-2-related proteins (152). Bcl-xS counteracts the protective function of 

Bcl-2 in growth-factor deprived cells (147), as well as in chemotherapy-treated breast cancer 



www.manaraa.com

24 

cells (153). In addition, expression of bcl-xs can induce apoptosis in solid MCF-7 tumors in 

nude mice (154), as well as in breast, colon, stomach carcinomas, and neuroblastoma cells (155). 

Bcl-xs can also antagonize the effects of Bcl-XL; however, since recent coimmunoprecipitation 

studies demonstrate that Bcl-xs binds to Bel-xL only weakly, and does not inhibit the ability of 

Bax to heterodimerize with Bel-XL, Bcl-xs may enhance apoptosis by a mechanism distinct from 

the fonnation of dimers like those of other Bcl-2 family members (156). It was found that bcl-xS 

mRNA is expressed at high levels in cells such as developing lymphocytes, which experience 

high rates of cell turnover, whereas bel-XL mRNA is found to be expressed in long-lived 

postmitotic cells such as adult brain neurons (147, 157), and in primitive human hematopoietic 

precursors which express CD34 but lack maturation-linked surface antigens (158). An additional 

transcript, bcl-xJ3 (157) is still under investigation. Preliminary evidence shows that 

microinjection of bcl-xJ3 into primary sympathetic neurons can inhibit their death induced by 

NGF withdrawal similar to the activity of bcl-x L (157). In addition, bcl-x-deficient mice are 

unable to survive and display massive apoptotic cell death in their developing neurons as well as 

hematopoietic cell systems (159). In contrast, Bcl-2 deficient mice are able to survive to birth; 

however, they exhibit extensive apoptosis in their lymphoid systems, polycystic kidney disease 

and hypopigmented hair (160). These data suggest roles for different Bcl-2-related proteins in 

different stages of development. 

Another important Bcl-2-related protein simultaneously discovered is the Bcl-2 homolog 

Bax, which coimmunoprecipitates with Bcl-2, and was found to heterodimerize with Bcl-2 

(161). The box gene has a complex six exon structure. Alternative splicing produces three forms 

of Bax protein: the 21 kD Baxa membrane protein, and the less abundant BaxJ3 and 18kD Baxy 

cytosolic proteins (161). Overexpression of bax was shown to accelerate apoptotic cell death in 

IL-3-dependent murine lymphoid progenitor FLS.12 cells upon growth factor withdrawal (161). 

Baxa is capable of both homodimerization, as well as heterodimerization with Bcl-2 (161). 

Historically, the domains in Bcl-2 responsible for this heterodimerization have been identified 

and designated BHl and BH2 (Bcl-2 homology 1 and 2), and are well-conserved among the 

majority of members of the Bcl-2 family of proteins (162). Mutation analyses of BH 1 and BH2 

domains in Bcl-2 protein have demonstrated the absolute requirement for the integrity of these 

regions in order for Bcl-2 to heterodimerize with Bax as well as to inhibit apoptosis (162), 

suggesting that Bcl-2 must exert its function through heterodimerization with Bax (162, 163, 
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164). In addition, phosphorylation of Bcl-2 by taxol in prostate carcinoma cells was shown by 

immunoprecipitation to inhibit Bcl-2 binding to Bax in conjunction with taxol-induced cell death 

(86). Incidentally, recent studies show that while interaction with Bax is required for proper Bcl-

2 functioning, interaction with Bax is not necessarily required for the functioning of the more 

potent Bel-xL protein, which still retains 70-80% of its anti-apoptotic activity when specific 

mutations disrupt its heterodimerization with Bax (165). 

It has been suggested that the intracellular ratio of p26Bcl-2:p21Bax ratios govern the fate 

of the cell after exposure to apoptotic stimu1i (161). \vith higher Bcl-2 levels promoting cell 

survival, and higher Bax levels promoting cell death. Figure 2 is a dra\ving of the model for the 

interrelationship between Bcl-2 and Bax, and its affect on the regulation of apoptosis, as 

proposed by Oltvai and Korsmeyer (161). Because overexpression of Bax counters the activity 

of Bcl-2 in blocking apoptosis, this model was proposed in which a major death checkpoint 

occurs in the progression of apoptosis which is governed by a preset "rheostat" composed of the 

intracellular amounts of Bcl-2 and Bax proteins (161, 166): \Vhen Bcl-2 levels are higher, and 

more Bcl-2:Bax heterodimers form, cells are protected from death by apoptosis, whereas when 

Bax levels are higher and more Bax homodimers can form, cells may be more susceptible to the 

induction of apoptosis. 

Bax has been determined to be expressed in a more widespread fashion than Bcl-2 itself, 

and found to be most intensely expressed in some areas associated with high rates of apoptosis. 

These include specific areas in crypts of small intestinal mucosa and gastric pits of the stomach, 

germinal centers of lymph nodes, and several different populations of neurons (167). Just as wt­

p53 has been demonstrated to regulate bcl-2 gene expression (80), analysis of the bax gene 

reveals that bax is also subject to regulation by p53, however, in a positive manner (62, 63). The 

bax gene promoter region has been found to contain four specific motifs which have homology 

to the p53 consensus DNA-binding sequence 5'-PuPuPuC(AlT)(T/A)GPyPyPy-3' (64), and 

suggests that bax may be involved in a p53-regulated pathway for the induction of apoptosis 

(64). 

Additional members of the Bcl-2 family of related proteins have rapidly been identified. 

Mcl-t and At were discovered through screening of eDNA libraries derived from myeloid 
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leukemia cells and normal cells induced to differentiate (70). When ML-l human myeloid 

leukemia cells were induced to differentiate along the monocyte/macrophage pathway by 

phorbol esters, an increase in the expression of the novel mcl-l gene was detected (168). Mcl-l 

has 950/0 sequence similarity to Bcl-2, and encodes a 37 kD protein whose differential expression 

has also been detected in germinal center lymphocytes of reactive lymph nodes, neoplastic 

follicles of follicular non-Hodgkin's lymphomas containing t(14;18) chromosomal 

translocations, and in Reed-Sternberg cells of Hodgkin's disease, but is absent in malignant 

mantle cell lymphomas (169). Recently, overexpression of mcl-l in Chinese hamster ovary 

eCHO) cells \vas demonstrated to de Iav internuc IeosomaI DN,L\ fragmentation and apoptosis 

induced by c-rnyc overexpression (1 70). Furthermore, Lomo et al. have correlated levels of 

expression of Mcl-l with in vitro survival of peripheral blood B-Iymphocytes exposed to 

apoptotic or survival stimuli (171). A 1 encodes a hematopoietic-specific 20kD protein which 

shares 40% homology with Bcl-2 (172). Al expression has been demonstrated to permit growth­

factor-induced differentiation of myeloid cells, but delays apoptotic cell death due to growth 

factor \vithdrawal similar to Bcl-2 (173. 174). 

The yeast two-hybrid and A expression cloning systems were used by Yang et al. to screen 

for Bcl-2 interacting proteins in the FL5.12 cell line (175) and allowed the detection of another 

novel Bcl-2-interacting protein Bad (Bcl-2-associated death promoter) which is homologous to 

Bcl-2 in the BHl and BH2 domains (175). Bad heterodimerizes with Bel-xL and Bcl-2, but not 

with 8ax, Bc l-xS, Mc 1-1, or AI, and does not homodimerize (175). Interaction cloning 

demonstrated that Bad binds more strongly to Bcl-xL than to Bcl-2. It was then found that when 

transfected and overexpressed in IL-3-dependent FL5.12 cells already overexpressing Bcl-2 or 

Bcl-XL, Bad displaces the binding of Bax to Bcl-xL and therefore allows apoptosis to proceed by 

virtue of free Bax proteins (1 75). A model proposed by Yang and Korsmeyer is summarized in 

Figure 3. 

Protein interaction cloning has also identified Bag-I, a novel Bcl-2-binding protein which 

is unique in that it shares no homology with Bcl-2 (176). However, co-expression of Bag-l and 

Bcl-2 in human lurkat lymphoid cells~ as well as Bag-l transfection in 3T3 fibroblasts, provides 

markedly increased protection from apoptosis induced by staurosporine, anti-Fas antibody, and 

cytolytic T-cells (175). 
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Recently, three Bak (B.cl-2 homologous antagonistlk.iller) proteins were identified in lurkat 

cells by virtue of their ability to bind to adenovirus E 1 B 19K protein~ which inhibits apoptosis 

(177). Bak, bak-2. and bak-3 represent pseudogenes which share 97% homology (178). They 

were found to have strong homology to Bcl-2 in the BH 1 and BH2 domains (1 78). 

Overexpression of bak in sympathetic neurons accelerates apoptosis induced by NGF­

deprivation (178), serum-deprived fibroblasts (179), and was also shown to block the protective 

effect of co-injected E 1 B 19K (178). Bak also binds to Bcl-xL( 178). Bak expression is 

demonstrated to be widespread in various tissues. \vith highest levels in heart and kidney (178). 

BfI-l (Bcl-2-related gene expressed in fetal liver) is also a recent bcl-2-related gene to be 

cloned. Isolated from human embryonic liver (180), BfI-l has highest homology to the murine 

Al gene, and homology to other Bcl-2 family proteins only in the BHl and BH2 domains. The 

bfl-l gene was found to be very strongly expressed in the bone marrow, and to a much lo\ver 

level in cell lines, normal adult lung, spleen, and esophagus tissue, as well as Burkitt" s 

lymphoma cells. Notably, bfl-l was found to be associated with the development of stomach 

cancer, with highest expressions in tissue samples from metastatic tumor nodules (180). 

Presently, it is hypothesized that Btl-l promotes cell survival. 

In addition, nT-I3 is a bcl-2-related gene found to be activated in embryonic quail 

fibroblasts and neuroretina cells transformed by the Rous sarcoma virus (v-src) (181), and was 

isolated from a cDNA library. Nr-I3 encodes a 177-amino acid protein which shares homology 

with Bcl-2 in the BH I and BH2 domains, and may contribute to the increased lifespan of RSV­

transformed cells (181), However, its function remains to be confirmed. 

The C. elegans cell death repressor ced-9 has also been found to be homologous to Bcl-2, 

as previously mentioned (182). The sequence and function of its BH 1 and BH2 domains were 

also demonstrated to be essential for the proper functioning of the ced-9 protein as a death 

repressor. Hengartner and Horvitz showed that a glycine to glutamate amino-acid substitution in 

the BH 1 and BH2 domains in ced-9 caused a gain-of-function activation of mutant ced-9 as an 

accelerator of apoptosis (183). This also demonstrates an extraordinary conservation of cell 

death regulator proteins through evolution. 
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Brag-l (hrain-related apoptosis gene) is a most recently identified bcl-2-related gene, 

specifically expressed in norma] human brain but found to be rearranged and overexpressed as a 

truncated transcript in human glioma (184). The gene was identified by screening poly-A­

enriched RNA preparations from glioma eDNA libraries with a bcl-2 probe under low stringency 

conditions, and encodes a 31 kD protein which also shares significant homology with Bcl-2 in the 

BH I and BH2 domains (184). In vitro-translated BRAG-I protein was found to cross-react with 

Bcl-2 monoclonal antibody (184). It is assumed that its activity is similar to that of Bcl-2 or Bcl­

XL in blocking apoptosis. 

FinaIIy, bik (B.cl-2-interacting killer, also known as Bip1 for Bcl-2-interacting 12rotein), is 

the latest bcl-2-related clone to be identified by the yeast two-hybrid method for Bcl-2-

interacting proteins. Bik interacts with survival-promoting proteins Bcl-2 and Bcl-XL, as well as 

Epstein-Barr virus BHRF 1 and adenovirus E 1 B-19K (185). In co-transfection experiments, 

these survival-promoting proteins \vere shown to suppress the death-promoting activity which 

Bik overexpression exerts by itself. Like 8ag-l, however, Bik does not show homology to the 

Bcl-2 fam ily in their conserved BH 1 and BH2 domains, but is unique in that it shares a new 

nine-amino acid BH3 domain with Bax and Bak (185). 

The newly identified BH3 domain is emerging in significance as playing a potential role in 

the pro-apoptotic activities of Bax, Bak, and now Bip. It has been observed that deletion of the 

BH3 stretch in Bik, Bak, and Bax alters their death-inducing activities as well as their ability to 

interact with Bel-XL (186). Zha et al. have recently found that while BHl and BH2 are required 

in the Bcl-2 protein for its proper function and for hetermodimerization with Bax, neither of 

these domains are exclusively required for binding of Bax to Bcl-2 or to Bax proteins themselves 

(187, 188). Instead the essential region in Bax for its dimerization has been mapped to its BH3 

domain (187, 188). In Bcl-2 this BH3 domain is upstream of the more widely established BHl 

domain, but downstream of the amino-terminal domain identified by Borner et al. as another 

region crucial to proper Bcl-2 activity (163), now called BH4. A significant recent study by 

Hunter and Parslow identifies the BH3 peptide sequence in Bax as its "suicide domain", and 

demonstrates that the substitution of this Bax BH3 stretch of amino acids into the corresponding 

BH3 domain of Bcl-2 converts Bcl-2 into an activator of apoptosis (189). They suggest that Bcl-
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2 may block apoptosis by suppressing the activity of Bax (189). Just as Yang and Korsmeyer 

hypothesize that the Bad protein, which sequesters Bel-xL and allows free Bax homodimers to 

promote apoptosis (175). Bcl-2 may function in sequestering Bax through 

heterodimerization, and thereby neutralizing its activity. 

Amino acid substitution in the BH4 domain in Bcl-2 affects its death-suppressing activity 

as well (163, 185). In addition, the BH4 domain localized to residues 10-30 has been recently 

discovered to be required for binding of Bag-l to Bcl-2 (190). The BH3 and BH4 domains may 

also be necessary for Bcl-2 interaction \vith Raf-l kinase (139, 190). Since not addressed in this 

thesis, it will be important to further clarify and establish the functions and significance of these 

domains in order to understand and eventually manipulate these complex protein interactions 

which may regulate cell death. Please see Figures 5a and 5b, and Table II for summaries on 

the homologies and interactions between Bcl-2 and its related proteins. 

Figure 2: The Bcl-2lBax "rheostat" death checkpoint which may govern susceptibility to 
apoptosis. Summarized from proposals by Oltvai and Korsmeyer (161, 166). 

Figure 3: Extension of Oltvai and Korsmeyer's Bcl-2:Bax "rheostat" model to include 
interaction of Bcl-2-related proteins with Bad: as proposed by Yang and Korsmeyer (175): 
Excess Bad most strongly sequesters Bcl-XL proteins, rendering Bcl-XL unable to bind free Bax. 
Levels of free BaxlBax homodimers capable of promoting apoptosis can then increase, and may 
render cells more susceptible to the induction of apoptosis when exposed to apoptotic stimuli. 

Figure 4: Model of Interactions Between Bcl-2 and its Related Proteins (Bullock, circa 
December 1995). 
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.Ei2Y[~ Sa. ALIGNMENT OE B~I-l-RELATED fROTEINS: 
KNOWN CONSERVED HOMOLOGY IN 

BHI Bnd BH2 DOMAINS 
(refs t 73, 175, J 77, 180, 181) 
(Bullock, circa. April t 996) 

BHl 

Bcl-2a AA 132 VVEEL FRDG VNWGRIVA FFEFGVMCV 159 

Bcl-XL 125 VVNEL FRDG VNMGRIV A FFSFGGALCV 152 

Bax 95 VAADM FSDGNFNSGRVV A LFYFASKLVL 122 

Mcl-l 249 VMIHV FSDGVTNWGRIVT LISFGAFVAK 276 

At 74 VMEKE FEDGI I NWGRIVT IFAFGGVLLK 101 

Bad 138 pp NLW AAQRYGRELR RMSDEFEG 160 

Bak 117 SL FESG INWGRVVA LLGFGY 136 -
8n-l 86 VMEKE FEDG I INWGRIVT IF AFEGILIKKL 105 

Nr-13 71 VAAOL ETDGGLNWGRLLA LVVFRGTLAA 98 

ced-9 157 VGNAQ TDQCPMSYGRLIG LISFGGFVAM 85 

BRAG ... 1 138 A SRVPPGSWG VMP IFSDRM 158 

CONSENSUS V __ EL F DG NWGRIVA _F_FGG -

BH2 3'CARBOXY B.IU 
TAIL? HOMOLOGY? 

Bel-2a 176 NRHLHT WI_QDN_GGWD 
Bcl-XL 170 NDHLEP_ WI_QEN_GGWD 
Bax 140 RERLLG_ WI_ QDQ_ GGWD 
Mel-l 295 VRTKRD WL_ VKQR_GWD 
Al 123 MNNTGE WI_RQN_GGWE 
Bad 182 G WT_RIIQSWWD 
Bak 168 WIAQR_GGWV 
Bn-l 128 MNNTGE_ WI_RQN_GGWE 
Nr-13 124 ACCQGE_ WMEE HGGGWD 
ced-9 207 KTRIRNN WKEHN RSWD 
BRAG-l 198 CNLQQ I ADFS 

CONSENSUS ___ L __ _ WI N GGWD ---

AFVELYG 

TFVELYG 

GLLSYFG 

GFVEFF_ 

DG ___ F_ 

RN LGK 

AALNLG 

NGFVKK 

GFCR __ _ 

_FMTLGK 

NIHPXS 

_FVELF_ 

203 

196 

166 

320 

148 

197 

184 

150 

149 

230 

213 
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unk 

unk 

unk 
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FIGURE Sb. 
ALIGNMENT OF Bcl-2-RELATED PROTEINS; 

KNOWN CONSERVED HOMOLOGY IN NEWLY-IDENTIFIED 
Bn3 DOMAIN (refs 185, 186, 188) 

(Bullock, circa. December 1995) 

BH3 

BipllBik AA61 LACIGDEMD 69 

Bcl-2 97 LRQAGDDFS 105 

Bcl-xL 90 LREAGDEFE 98 

Bax 63 LKRIGDELD 71 

Bak 78 LA I IGDDI N 86 
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lADLE II; Bcl-2 AND RELATED GENE fRODUCIS: 
(refs 170, 180, 185, 191, 192) 
(Bullock, circa. April 1996). 

Gene: Protein: Re2ulation Interactions with: Expression: Subcellular location: 

of Apoptosis: 

bel-2 BcI-2a blocks Bc1-2, Bel-xL_ Mel-} Wide embryonic tissues Outer mitochondrial. 
Bax, Bcl-xs Some postnatal tissues Endoplasmic reticulum, 

Raf .. l Nuclear membranes 

be/-x Bel-xL blocks same as Bcl-2 same as Bcl-2 same as Bcl-2 

BcI-xs promotes Bel-2, Bel-xL thymus 

BcJ-x~ blocks unknown unknown unknown 

bax Baxa promotes BcI-2, Bel-xL widespread same as Bc1-2 

bad Bad promotes BcI-XL' Bcl-2 unknown unknown 

(sequesters) 

bag-l Bag-I blocks Bcl-2 unknown unknown 

bak Bak promotes Bel-XL, Bcl-2 \\" i despread unknown 

bak-: E I B 19K 
bak-3 

bfl-l Bil-t unknown NO bone marrow unknown 
lung, spleen, esophagus 

stomach cancer 

A! Al blocks hematopoietic tissues unknown 

mel-! MeI-l blocks Bel-2, Bel-xL myeloid cells similar to Bc1-2 

nr-J3 NR-13 blocks unknown embryonic cells same as Bel-2 
transformed by RSV 

brag-! BRAG-l unknown unknown brain, glioma unknown 

bik BiklBipl promotes BcI-2, BcI-xL unknown unknown 
EBV-BHRFI 
ElB 19K 
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6. Expression of bcl-2 and related genes in malignancies. 

These discoveries represent a vast and rapidly-growing list of complex interactions by 

\vhich the viabil ity of cells at different stages of development are subjected to regulation. It \vill 

be crucial to learn how these interactions govern drug-induced apoptosis in the clinical setting. 

The expression of bcl-2 and its related genes have significance in the treatment and prognoses of 

cancers. For example, Bcl-2 is expressed in the prostate and is associated with the emergence of 

androgen- independent prostate cancer (193). Bcl-2 is expressed in early lymphoid malignancies 

(194). and Bcl-2 expression in Burkitt's lymphoma cell lines can be induced by latent Epstein­

Barr virus genes (115). Reed-Sternberg cells in Hodgkin' s disease frequently express both bc/-2 

and c-myc oncogene products, suggesting that these oncogenes may act cooperatively in the 

pathogenesis of this disease (195). 

The c lassie involvement of bcl-2 in human malignancies is its participation in the t( 14: 18) 

chromosomal translocation of follicular non-Hodgkin's 8-cell lymphomas, as previously 

mentioned (70). peR (polymerase chain reaction) is an excellent tool in molecular medicine and 

can even detect point mutations in bcl-2 genes of malignancies with t( 14; 18) (196). It has been 

reported that all advanced stage non-Hodgkin's lymphoma with a polymerase chain-reaction 

(PCR)-ampl ifiable breakpoint of bcl-2 have residual cells which contain the bcl-2 rearrangement 

at evaluation and after chemotherapy treatment, suggesting the contribution of bcl-2 to and 

prediction of minimal residual disease (197). 

Bcl-2 expression is not restricted to lymphomas carrying t( 14; 18), however. Bcl-2 is 

broadly expressed in various hematopoietic neoplasms (198). Kondo et al. report that Bcl-2 

expression is detectable in early normal as well as neoplastic lymphoid precursors, and persists 

in B-cell blasts, T-cell blasts (198), as well as myeloma cells (198, 199). Bcl-2 is also expressed 

in normal plasma cells (199). In the myeloid lineage, however, they report that Bcl-2 expression 

is not seen in myeloid precursors, but is expressed in later myeloblasts. Bcl-2 expression \'las 

not detected in stem cells. These data are in agreement with studies by Park et al. (158), and 

suggest that the expression of bcl-2 and its related genes is stage-specific. Bcl-2 expression is 

found in acute myeloid leukemia (AML) cells such as KG 1 cells, but not in K562 cells (200). 

Instead, K562 represent an extremely resistant form of chronic myeloid leukemia blast crisis 



www.manaraa.com

37 

cells which harbor not only the t(9;22) chromosomal translocation and resulting bcr-abl fusion 

protein, but also express the potent Bcl-2 homolog Bcl-xL (201-203), both of which contribute to 

their resistance to drug-induced apoptosis. as will be described in Chapter Two. 

Bcl-2 expression in malignancies can indeed impact on clinical outcome. Campos et al. 

have reported that high expression of Bcl-2 protein in patient-derived AML cells is associated 

with poor response to chemotherapy regimens which include Ara-C as well as daunorubicin and 

mitoxantrone (204). Furthermore, inhibition of Bcl-2 protein with antisense oligonucleotides 

induces apoptosis and increases the sensitivity of normal bone marrow progenitor cells (205) as 

well as patient-derived AML blasts to Ara-C (206). These data highlight the important impact of 

Bcl-2 levels in leukemias on patient outcome. The correlations suggest a clinical relationship 

between Bcl-2 function and drug-induced apoptosis worthy of further pursuit in order to improve 

treatment of AML, as well as other malignancies. 
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C. Acute Myeloid Leukemia. 

1. Definition, history, and classification. 

Acute myeloid leukemia (AML) is a clonal malignant disease of hematopoietic stem cells 

which normally have the capability of maturing into blood cells of the myeloid species including 

mature erythrocytes, megakaryocytes (and subsequently, platelets), monocytes, macrophages, 

neutrophils, eosinophils, and basophils. Please see Figure 6 for an illustration. The myeloid 

lineage differs from cells committed to the lymphoid lineage, which give rise solely to B- and T­

lymphocytes. and mature in the lymph tissue. A.iv1L is characterized by the proliferation of 

abnonnal blast cells in the bone marrow incapable of normal maturation and differentiation, as 

well as suppression of the production of nonnal blood cells due to this crowding (207). 

AML was first documented by Friedreich (208), first named by Ebstein in 1889 (209), and 

distinguished from chronic myeloid leukemia by Frankel in 1895 (210), Presently, the disease is 

subclassified into eight subgroups (IvII-IvI8) by the French-American-British (F AB) 

classification which only distinguishes the lineage involvement of the leukemic blasts at 

diagnosis based on morphological, cytochemical, and cytogenetic criteria (207, 211): acute 

myeloblastic leukemia (AML)(M I ,M2); acute promyelocytic leukemia (APL)(M3); acute 

myelomonocytic leukemia (AMML)(M4); acute monoblastic leukemia (AMoL)(M5); 

erythroleukemia (EL)(M6); megakaryocytic leukemia (ML)(M7); and rarely, eosinophilic 

leukemia (EoL)(M8). This classification is in the process of being updated based on molecular 

information. 

Figure 6: 

The hematopoietic "tree" is a hierarchical scheme illustrating the irreversible development of 
immature self-renewing stem cells in the bone marrow into progressively more differentiated 
progenitor cells prior to their ultimate tenninal maturation. The functional cells in their final 
forms for each lineage are then capable of circulating from the bone marrow into the peripheral 
blood, and perfonn various actions, but are incapable of self-renewal. 
CFU refers to a colony-forming unit, and BFU refers to a burst forming unit., which are among 
the first stages of commitment of progenitor cells to specific myeloid lineages. These terms 
refer to in vitro colonies which contain cells of several lineages. 
Acute leukemias can develop from any of these early stages in maturation, as described in the 
text, and are characterized as such. 
Sources of hematopoietic regulators such as humoral interleukins, include progenitor cells 
themselves, as well as activated T-Iymphocytes, monocytes, marrow stromal cells, and some 
endothelial cells. (refs 207, 212) 
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2. Presentation at diagnosis. 

Leukemogenesis is considered to involve two steps (207): first, a critical mutation occurs 

in a single cell. usually in a proto-oncogene which is nonnally tightly regulated, and a second 

genetic change involving one or more oncogenes subsequently leads to the progression of AML 

(213). The etiology of AML is still largely unknown. Some conditions predisposing to the 

development of AML include environmental factors such as exposure to radiation, benzene, or 

alkylating agents; acquisition from pre-existing hematopoietic diseases; and some inherited 

conditions (207,214). Usually seen in adults, general symptoms of AML include pallor, fatigue, 

\veakness, palpitations. and dyspnea on exertion, reflective of anemia (207): signs of bone 

marrow failure include easy bruising, petechiae and hemorrhages, reflective thrombocytopenia, 

and infections reflective of neutropenia (207). Infiltration of leukemic cells in various organ 

systems including the skin, gastrointestinal tract, liver, lungs, heart, kidneys, spleen, and central 

nervous system, may occur as immature cells circulate through the bloodstream (207). 

3. Treatment of A~lL. 

The current standard treatment for AML is first, the attempted induction of remission 

with cytotoxic drugs, that is, eradication of the monoclonal leukemic population to a level at 

which the leukemic cells are no longer detected in bone marrow aspiration or biopsy. Clinical 

trials in AML have shown that drug regimens which include combinations of an anthracycline 

antibiotic or an anthraquinone and cytarabine (l-J3-D-arabinofuranosylcytosine) (Ara-C) (207, 

215-217), can achieve general remission rates of 50-900/0 in adults (218). Additional treatment 

with mitoxantrone or etoposide may be more effective for remission induction (207, 218). 

Furthennore, supplementation of chemotherapy regimens with hematopoietic growth factors 

such as G-CSF or GM-CSF (granulocyte- or granulocyte/macrophage colony-stimulating 

factors) can diminish myelosuppression and infections on a short-term basis (218). Long-term 

remission can occur in approximately 20% of patients treated (207). In order to prolong the 

duration of rem ission, consolidation or postremission chemotherapy with different doses of 

the same cytotoxic agents is necessary; autologous or allogeneic bone marrow transplantation of 

hematopoietic stem cells can supplement this treatment, and can prolong remission greater than 

two years. 

However, relapse of the leukemia occurs in the majority of patients due to many factors; 

only 10 percent of adults between ages 15-60 who are treated with chemotherapy remain in 
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remission for over 5 years (207), and repeated chemotherapy often becomes less effective. The 

basis of this relapse is under intense investigation: explanations include drug resistance of 

leukemic clones by various mechanisms including down-regulation of enzymes critical for drug 

metabolism (219), as well as up-regulation of transmembrane drug-efflux pumps coded for by 

the mdr gene family (220), and now, the emergence of altered expression of oncogenes such as 

the bcl-2 family which block drug-induced cell death (204-206). As previously mentioned, 

Campos et al. have reported that high expression of Bcl-2 protein in AML cells is also associated 

with poor response to remission induction chemotherapy treatment including an anthracycline 

drug or mitoxantrone plus _Ara-C (204). In this study. high Bcl-2 expression was detected in 

immature forms of AJ\tlL (M 1 and M2) (204). Porwit-lvlacDonald et al. also found that mean 

Bcl-2 levels were higher by flow cytometry in AML with Ml and M2 features than more 

differentiated promyelocytic (M3) or myelo-monocytic (M4IMS) leukemias (221). In Campos' 

study, only 290/0 of cases which had 20% or more leukemic blasts positive for Bcl-2 expression 

achieved complete remission after intensive chemotherapy, whereas 85% of cases with less than 

20~-'O cells positive for Bcl-2 expression achieved complete remission. In addition, Deng el a/. 

have found that Bcl-2 is expressed at high levels in patient-derived AML cells which possess 

monosomy 5 and 7, and are thus representative of cases with poor prognosis (222). Because 

AML blasts with high Bcl-2 expression are able to survive longer in vitro as well as in vivo, the 

expression of Bcl-2 in AML is associated with very poor prognosis (204). 

Therefore it is essential to increase our understanding of not only how the treatments 

of choice for AML are effective, but how their efficiency may be hindered, in order to 

improve the achievement of remission of leukemia, and decrease the chances of relapse 

after treatment. 
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De 1-6-D-Arabinofuranosylcytosine (Ara-C). 

l-~D-arabinofuranosylcytosine (Ara-C, cytarabine, cytosine arabinoside) is a 

nucleoside analogue. It is one of the most effective agents in the treatment of acute myeloid 

leukemia (AML) (223). Arabinose nucleosides are also antimetabolites, and were originally 

isolated from the sponge Cryptothethya cryptaj but now are produced synthetically (224). Ara­

C differs from normal deoxycytidine by the presence of a f3-0H group in the 2' position of the 

normal sugar (224). Ara-C has a limited spectrum of activity, but is selective against rapidly 

dividing cells (223, 224). .A.ra-C therefore has little activity as a single agent in solid tumors 

which do not sho\v progression through the cell cycle as rapidly at the cellular level. Ara-C is 

used primarily in combination with anthracycline antibiotics doxorubicin (adriamycin) or 

daunomycin for remission induction in AML (224). Ara-C is also useful in combination therapy 

for histiocytic lymphoma as well as for childhood acute lymphocytic leukemia (ALL) (224). 

The specific basis for the selectivity of action of Ara-C is largely unknown. 

1. Intracellular metabolism of Ara-C. 

Ara-C enters cells by a carrier-mediated process of facilitated diffusion via membrane 

nucleoside binding sites shared by nonnal deoxycytidine (224-227). The number of binding sites 

detected by incubation with nitrobenzylthioinosine (224, 225) have been demonstrated to be 

greater in AML cells than in ALL cells (226, 227). Intracellularly, Ara-C is phosphorylated by 

the sequential action of first, the rate-limiting deoxycytidine kinase, followed by deoxycytidylate 

kinase (dCMP) and nucleoside diphosphate (NDP) kinase, to be ultimately converted to its active 

metabolite, Ara-CTP (224, 225), as illustrated in Figure 7. Ara-CMP can be inactivated by 

dCMP deaminase to Ara-UMP. Ara .. C is an S ... phase-specific agent (228). The lethal metabolite 

Ara-CTP competes with normal dCTP for incorporation into actively replicating DNA by DNA 

polymerases a and f3, but does not incorporate into RNA. While relationships have been drawn 

between the intracellular dCTP/ Ara-CTP ratio and the cytotoxic effect of Ara-C (229), the extent 

of Ara-CTP incorporation has historically been correlated with inhibition of DNA synthesis, loss 

of clonogenic survival and cytotoxicity (223, 228, 230, 231). 
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2. Mechanism of action of Ara-C. 

Ara-C has been previously described as a relative DNA chain terminator (223). Upon 

incorporation into DNA~ Ara-C disrupts replicative DNA synthesis. Extension from the altered 

3' terminus of Ara~C is inefficient, causing the subsequent stalling of DNA polymerases, and 

reinitiation of synthesis by DNA polymerase In previously replicated segments 

(endoreduplication) (223-225, 232, 233). Ara-C also causes aberrant synthesis of primer RNA 

by DNA primase, required for the extension of Okazaki fragmnets on the lagging strand of the 

DNA replication fork (rev. in 233). These effects of Ara-C inhibit the proper formation and 

continuity of repl icatian forks (233, 234). and are described as resulting single-strand gaps or 

breaks in genomic DNA. In addition, if Ara-C is not removed by cellular repair processes 

(explained in more detail in Chapter Five), the residues accumulate in an internal position in the 

altered DNA chains, and contribute to the lethality of Ara-C (230, 231, 235-238). 

High-dose Ara-C, in combination with other DNA damaging agents, is also a potent 

inhibitor of DNA repair synthesis. This is suggested by observations that Ara-C increases the 

frequency of DNA single-strand breaks, chromosomal aberrations and cytotoxicity induced by 

UV-irradiation (239), alkylating agents (240), and X-irradiation (241). It has been demonstrated 

by alkaline sucrose gradient analysis that Ara-C induces single-strand DNA breaks upon 

incorporation into fibroblast DNA undergoing repair of UV -induced damage (242). Evidence for 

formation of DNA strand breaks by Ara-C itself come from experiments by Fram and Kufe, 

which demonstrate DNA strand lesions in DNA from intact L 1210 murine leukemia cells 

exposed to Ara-C, and detected by the alkaline elution technique for single-strand DNA breaks 

(243). Fram and Kufe suggest that these lesions are due to inhibition of DNA synthesis rather 

than incorporation into the DNA strand by virtue of the use of aphidicolin, a DNA polymerase 

inhibitor which does not incorporate into the DNA strand, but which produces similar elution 

results (243). Ross clarifies Ara-C-induced DNA damage by his demonstrations utilizing pH­

step alkaline elution of nascent or newly synthesized DNA, in which accompanying alkaline 

sucrose density gradients prove that DNA with molecular weight nearest to Okazaki fragments 

elutes from filters at pH 11.0, nascent DNA (with relative molecular weight [Mr] of 8-12 x 106 

bp) synthesized at replicon origins elutes at pH 11.3, and subgenomic DNA strands (Mr 20-30 x 

106 bp) elute at pH 11.5 and 12.1. Ross e/ al. demonstrated that Ara-C-induced DNA damage 

in HL-60 cells is appreciated at fixed pH 12.1, indicating that Ara-C inhibits nascent chain 
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elongation and thus leaves single-strand breaks, but Ara-C does not decrease the production of 

smaller Okazaki fragments or other lower molecular weight nascent DNA species, evident by the 

failure of Ara-C to decrease eH]-thymidine incorporation into these fragments at low levels 

(237). Endoreduplication is suggested to contribute to the accumulation of these shorter DNA 

fragments (223, 232, 234). Studies have also shown, however, that Ara-C inhibits DNA ligase 

activity in HL-60 and K562 leukemic cell lines through inhibition of an intermediate Iigase­

adenylate complex during its action (244, 245), and may also explain accumulation of shorter 

DNA species. 

Grem et al. have recently reviewed the chronology of Ara-C-induced DNA damage in a 

series of experiments which separate early events from later events (246). They demonstrate 

that immediately following a 24 ... hour exposure of HCT 116 and NCI-H630 human colon 

carcinoma cells to increasing concentrations of Ara-C, proportionate increases in Ara-CTP pools, 

as well as Ara-C DNA incorporation were observed. Increases in Ara-C-mediated strand breaks 

in higher molecular weight DNA templates were evidenced by shifts in fixed pH alkaline elution 

profiles of single-strand breaks at pH 12.1, in conjunction with decrease in overall DNA 

synthetic rate by e4C]-thymidine incorporation. Proportionate increases in nascent or newly 

synthesized DNA, however, were evidenced during elution with pH steps 11.0, 11.3, and 11.5, 

indicating accumulation of lower molecular weight species reflective of DNA synthesis 

reinitiation and endoreduplication. Double-strand breaks or fragmentation in parental DNA, 

however, were most evident by ELISA for oligonucleosomal fragmentation 16 hours after 

removal of Ara-C from the cells, indicating a chronological progression of early to later events 

of DNA damage when cells are exposed to Ara-C. Ara-C-induced double-strand 

intemucleosomal DNA fragmentation is associated with morphologic features char~cteristic of 

apoptosis (22, 98) in leukemic cell lines. However, the precise mechanism(s) by which the 

observed molecular perturbations due to Ara-C contribute, either directly or indirectly, 

toward the engagement of the final common pathway leading to apoptosis remain to be 

elucidated. 
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3. Other targets of Ara-C. 

Ara-C has also been documented to affect various targets not necessarily contributing to its 

cytotoxicity, but possibly linked to intracellular signal transduction in the cellular response to 

Ara-C. For example, high doses of Ara-C can form a significant metabolite Ara-CDP choline, an 

analogue of cytidine 5' -diphospho .. choline (COP-choline). CDP-choline is involved in an 

enzymatic pathway for phosphatidylcholine biosynthesis, and is linked to protein kinase C 

(PKC) signalling (224, 225, 247). Ara-CDP can subsequently inhibit synthesis of membrane 

glycoproteins and glycolipids (224, 225, 248, 249), and represents a potential alternative 

pathway for Ara-C-induced cell perturbations independent of its effect on DNA synthesis. The 

contribution of Ara-CDP choline toward cell cytotoxicity remains uncertain. Ara-C treatment 

also results in increases in ceramide and diglycerides within 30 minutes in HL-60 cells, also the 

result of activation of phospholipid pathways and related second messengers (250). Notably, 

ceramide itself has been demonstrated to induce DNA fragmentation associated with apoptosis in 

HL-60 cells (251) by virtue of its implication in a signal transduction pathway utilized by tumor 

necrosis factor-a (TNF-a) (251-253). The ultimate inclusion of pro-apoptotic ceramide in the 

signal transduction of Ara-C-induced apoptosis is presently under investigation. 

Other targets affected by Ara-C include the transcription factor kB (NFkB), \vhich has been 

shown to be activated within 30 minutes of Ara-C treatment in human KG-I cells (254). Ara-C 

can also regulate HI histone expression at both the transcriptional and posttranscriptional levels: 

Ara-C treatment of HL-60 cells for 15 minutes has been associated with inhibition of HI histone 

gene transcription as well as decrease in stability of HI histone transcript (255). These 

expressions, however, have not been related to Ara-C-induced apoptosis. The c-jun gene, which 

encodes a sequence-specific bZIP DNA-binding protein, is induced at the transcriptional level by 

Ara-C (256), as arejun-B. jun ... D, and c-fos (257-259). The AP-l transcription factor is activated 

in KG-l cells by Ara-C, and its binding to the AP-l site in the c-jun gene promoter is increased 

by Ara-C treatment (260). Ara-C-induced c-jun gene induction was also found to be mediated 

through PKC (261). However, c-jun induction may not necessarily be required for Ara-C­

induced apoptosis. Abrogation of c-jun induction by concomitant treatment with the protein 

kinase inhibitor staurosporine was demonstrated to enhance Ara-C-induced apoptosis in HL-60 

cells (262). In addition, U937 monoblastic leukemia cells expressing a mutant c-lun protein 
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(TAM67) lacking the transactivation domain were shown to exhibit equivalent degrees of Ara-C­

induced apoptosis (263). 

Ara-C can activate MAP kinase through kinetics similar to those of protein kinase C (264). 

Most recently, however, Saleem et al. have demonstrated the activation of a stress-activated 

protein (SAP) kinase by Ara-C, as well as by other DNA-damaging agents (265). After 3-hour 

treatment of U-937 cells with HIDAC, activation of p54 SAP kinase (which is also known as 

JNK, and is related to MAP kinases) was also found to phosphorylate the amino tenninus of c­

lun and thereby stimulate its transactivation function. In addition, the binding of SAP kinase to 

the SH3 domain of Grb2, an SH2/SH3-containing adapter protein, is also induced by Ara-C, and 

a complex with phosphatidylinositol 3-kinase (PI 3-kinase) at the Grb2 SH2 domain results. 

Saleem et a/. have thus attempted to link the ultimate manifestation of Ara-C-induced 

internucleosomal DNA fragmentation with Ara-C-induced interaction between SAP kinase and 

PI 3-kinase. If Ara-C treatment increases ceramide levels in affected cells, the link may be in 

recently described initiation of SAPKlJNK signalling by ceramide itself (266). The link may 

also include the activation of the c-abl non-receptor tyrosine kinase by Ara-C, which was shown 

to be necessary for the stimulation of SAP kinase (267). 

Short exposure (3 to 6 hours) of HL-52S myeloid leukemia cells to Ara-C has been 

demonstrated to induce Early growth response-l mRNA transcription and activation of nuclear 

pp90rsk
, a kinase which functions early in the MAP kinase signal transduction pathway (259). 

Most recently, Ara-C was shown to activate tyrosine phosphorylation of the cell cycle regulator 

protein p34cde2 by its association with the sre-like p56/p53 1yn kinase, and subsequently 

inactivates p34Cdc2 (268). It is suggested that Ara-C-induced cytotoxicity includes negative 

regulation of cell cycle progression, which is contrary to mechanisms demonstrated in cells 

undergoing apoptosis due to taxoi, as well as the lymphocyte granule protease, which require 

activation ofp34cdc2 (143, 269). The significance of these findings remains to be clarified since 

the precise and complex details of the signalling of apoptosis leading to the eventual generation 

of double-strand DNA breaks are also unclear (please see Figure 8). 
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Figure 7: 
Illustration of Ara-C metabolism and known mechanisms of action (after Kufe, ref. 
196, and Chabner, ref. 224, 225). 
Upon entering leukemia cells via carrier-mediated diffusion at nucleoside binding sites, Ara-C is 
phosphorylated to its active metabolite Ara-CTP, which competes with normal dCTP for 
incorporation into genomic DNA undergoing active replication and repair. Incorporated Ara-C 
residues cause significant inhibition of activity of DNA polymerase, resulting in inefficient chain 
elongation, single-strand gaps in DNA, and attempted reduplication of DNA sequences. Ara-C 
subsequently causes both high molecular weight and low molecular internucleosomal double­
stranded DNA fragmentation associated with the morphological features of apoptosis in 
leukemia cells, but the pathway by which single-strand damage is transduced to a signal which 
induces this fragmentation remains yet to be elucidated. 

Figure 8: 

Schematic diagram of Ara-C-induced DNA damage and regulation of the endpoints of 
apoptosis by various gene products. 

As mentioned in Figure 7, Ara-C causes single-strand damage to DNA upon incorporation 
into the DNA strand. How this single .. strand DNA damage is translated into and progresses to 
the induction of double-stranded DNA damage associated with apoptosis, however, is unknown. 
The endonuclease(s) responsible for this double-stranded DNA damage are also controversial. 
The involvement of cysteine protease cascades in the progression of drug-induced apoptosis will 
be discussed later in this thesis. 

Various gene products have substantial impact on the progression to drug-induced 
apoptosis, as listed above. I-Iowever, how these gene products interplay in the signalling of 
apoptosis, and which types of DNA damage they affect is still under investigation. 
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Et Objectives of this dissertation. 

Previous studies of Ara-C's mechanism of lethality in leukemia cells have only defined 

incorporation into DNA as the most important cytotoxic event, and have not defined the key 

lethally damaging event responsible for the induction of apoptosis by Ara-C. Likewise, since 

Bcl ... 2 is known to block double-strand DNA fragmentation associated with apoptosis, it would 

be worthwhile to further explore the other types of Ara-C-induced DNA damage which Bcl-2 

can also potentially block as an explanation. The purpose of these studies is to further define the 

extent of .t\ra-C -induced cytotoxicity in ,-\\1L cells. and to define the lethal events \vhich occur 

\vith respect to relative Bcl-2 expression~ since high Bcl-2 levels can affect treatment outcome 

(204). The overall objectives of this thesis are to use an in vitro human AML cell model to 

further examine the biochemical mechanisms underlying Ara-C-induced DNA damage, 

cytotoxicity, and apoptosis, as well as to examine how enforce high expression of p26Bcl-2 

interferes \vith Ara-C-induced apoptosis. 

The major hypothesis of these studies is that Bcl-2 overexpression in AML cells blocks 

total DNA fragmentation due to Ara-C. In this dissertation, the following hypotheses will be 

tested: 

1. The metabolism of Ara-C to its lethal metabolite Ara-CTP, its incorporation into DNA and its 

ability to induced breaks in DNA, are similar in AML cells which overexpress Bcl-2 as 

compared to parental cells. However, the total double-stranded DNA fragmentation associated 

with Ara-C-induced apoptosis is blocked in AML cells which overexpress Bcl-2. 

2. The intracellular p26Bcl-2 levels determines not only the initial amount of Ara-C-induced 

DNA damage but also the fate of residual DNA damage over time, which correlates with the 

survival of cells after Ara-C treatment. 

3. Following Ara-C-induced DNA damage, unscheduled DNA repair synthesis will be higher in 

cells with higher Bcl-2 levels. 
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Hypotheses. 

In Chapter ill (hypothesis #1), the metabolism of Ara-C is studied in AML cells with 

disparate levels of Bcl-2 expression, and the affectation of early targets of Ara-C are compared. 

In Chapter IV (hypothesis #2), the level of Bcl-2 expression in AML cells is correlated with the 

fate of cells after Ara-C treatment. In Chapter V (hypothesis #3), the possibility of increased 

repair of Ara-C-induced DNA damage in AML cells which overexpress Bcl-2 is examined in an 

attempt to explain the increased survival of these cells after Ara-C treatment. The ultimate goal 

of these studies is to target specific sites in Bcl ... 2 mediated inhibition of Ara-C-induced 

apoptosis, in order to improve the antileukemic efficacy of ~'\ra-C. 
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CHAPTER II: DEVELOPl\''1ENT OF IN VITRO AML CELL MODEL: 

A. Choice of a model cell line. 

1. Expression of Bcl-2 and related proteins in AML cell lines. 

The first goal for these studies \vas to transfect Arv1L cells \vith the bcl-2 eDNA and to 

achieve overexpression of p26BcI-2. To select a suitable AML cell line for such a transfection, 

first in vitro AML cell lines were screened for their endogenous levels of expression of p26Bcl-

2. One initial goal was to choose a cell line \vith the lowest enodogenous Bcl-2 expression in 

order to facilitate overexpression. Figure 9 sho\vs a Western blot demonstrating p26Bcl-2 levels 

in several A.ML cell lines. For example, p268cl-2 \vas detectable in parental KG-1 (first lane), 

U937 (second lane). and HL-60 myeloid leukemia cells (fourth lane), but no p26Bcl-2 

expression was detected in K562 chronic myeloid leukemia (CML) blast crisis cells (third lane). 

This suggested that K562 cells would be ideal for the transfection and overexpression of the bel-

2 gene. However, despite undetectable p26Bcl-2 levels, K562 cells are extremely resistant to 

drug-induced apoptosis (201-203). Figure 10 demonstrates that clinically achievable doses and 

schedules of Ara-C, taxol, and mitoxantrone readily induce internucleosomal DNA 

fragmentation and apoptosis in HL-60 cells, but not in K562 parental cells. To determine the 

mechanism underlying this, the expression of the bcl-2 family of genes was examined in K562 

cells. Figure 11 shows that in contrast to HL-60 cells which are extremely sensitive to drug­

induced apoptosis, K562 cells have high endogenous levels of bel-xL mRNA and p29Bcl-xL 

protein (201-203, 270). The high expression of this bel-2 homolog, can suppress apoptosis to an 

equal if not greater extent than Bcl-2 (147). In addition, K562 cells contain the bcr-abl fusion 

gene from the t(9;22) translocation of CML. This has also been shown to suppress drug-induced 

apoptosis (67, 68). Therefore, overexpression of Bcl-Xb together with bcr-abl, render K562 cells 

highly resistant to drug-induced apoptosis. Not being derived from CML, HL-60 cells do not 

possess p210bcr-abl. In addition, both HL-60 and K562 cells have deletions of the p53 tumor 

suppressor gene (271, 272). wt-p53 promotes, while mutated p53 confers resistance to apoptosis 
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(48-49; 57-59), and therefore p53 expressIons would not interfere in subsequent apoptosis 

studies. Although U937 cells have less p26Bcl-2 expression than either KG-lor HL-60 cells, 

however, unlike these two cell lines. they are also described by the American Tissue Culture 

Collection (ATCC) as histiocytic lymphoma cells. Thus they would not be considered as 

representative of AML cells. Therefore, HL-60 cells appeared to be are the best overall candidate 

cells to use for the proposed studies. To summarize, HL-60 cells have: a) detectable BcI-2 

levels; (b) absence of Bel-xL expression; (c) absence of p53; and (d) are sensitive to drug-

induced apoptosis. 

2. HL-60 cell line. 

HL-60 is a growth-factor independent immortal suspension culture cell line originally 

cultured by Collins et al. (273). The cells \vere derived from peripheral blood leukocytes 

obtained from a 36-year-old Caucasian female diagnosed w"ith acute promyelocytic leukemia 

(274). HL-60 cells indeed have distinct myeloid characteristics, and are phenotyped as 

expressing CD33 and CD38, but not C034, unlike more primitive C034+ AML stem cells of 

F AB class M 1 or M2, which are capable of engrafting after transplantation into SCID mice 

(275). In addition, HL-60 cells lack specific lymphoid markers but express surface receptors for 

Fc fragment and complement (261). Approximately 5-10% of cultured HL-60 cells 

spontaneously differentiate beyond the promyelocytic stages, to become morphologically mature 

myelocytes, metamyelocytes, banded or segmented neutrophils (271, 273), and therefore 

represent a more committed progenitor cell later in myeloid development than stem cells 

themselves (please refer to Figure 6). Differentiation into granulocytes is further enhanced in 

HL-60 by the addition of polar-planar compounds such as dimethylsulfoxide (DMSO) (271, 276) 

and retinoic acid (277). In addition, naturally occurring compounds such as 1,25 

dihydroxyvitamin D3 can induce differentiation of HL-60, as well as normal bone marrow cells, 

into cells which exhibit monocytic characteristics (278, 279). Macrophage-like characteristics 

can be induced in HL-60 cells primarily by the phorbol ester tumor promoter 12-0-

tetradecanoylphorbol-13-acetate (TPA), which causes HL-60 cells to become more adherent than 

HL-60 monocytes (271, 280, 281). Granulocytic differentiation of HL-60 cells, however, 

appears to be associated with greater loss of proliferative capacity of the induced cells than does 

monocytic differentiation (271). 
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HL-60 cells exhibit genomic aberrations with regard to at least three cellular oncogenes: c­

myc, N-ras, and p53 (271). HL-60 cells exhibit a 15- to 3D-fold amplification of the c-myc gene 

as compared to normal cells (271, 282, 283) and, in the undifferentiated state, exhibit high levels 

of steady-state c-myc RNA (271). The N-ras oncogene has been identified in HL-60 cells as 

having a point mutation involving the second nucloetide of N-ras codon 61 (271, 284). This 

mutated ras gene in HL-60 cells has the ability to malignantly transform NIH3T3 fibroblasts in 

transfection assays (285). The expression of the tumor suppressor gene p53 is absent in HL-60 

cells because the p53 locus on the short arm of chromosome 17 is extensively deleted (271, 286, 

287), It is suggested that because c-nzyc and p53 may share some physiologic functions, 

populations of HL-60 progenitors may have selected for cells harboring amplified c-myc in order 

to compensate for the loss of p53 (271, 286). 

Recently, it has been documented that true promyelocytic leukemias harbor a characteristic 

reciprocal chromosomal translocation t( 15; 17) involving the RARa (retinoic acid receptor a) and 

PML gene, which encodes a putative zinc finger transcription factor (288-292). The resulting 

fusion protein PMLIRARa contains a mutated RARa which affects the survival of myeloid 

precursor cells. PML itself has been shown to be a promoter-specific transcriptional repressor 

(292). HL-60 cells do not harbor this translocation and are sensitive to retinoic acid. 

Transfection of HL-60 cells with the P MLlRARu fusion transcript, however, was shown to 

inhibit granulocytic differentiation due to retinoic acid (291). In addition, transfection of 

PMLlRARa. into U937 myeloid precursor cells was shown to cause loss of their capacity to 

differentiate when induced by vitamin 03, and showed a higher growth rate due to reduced 

apoptotic cell death associated with terminal differentiation (289). Therefore HL-60 cells do not 

possess this additional regulator of apoptosis in APL, and are more correctly termed acute 

myeloid leukemia (AML) cells. 
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Figure Legends: 

Figure 9: Expression of Bcl-2 in AML cell lines. 
KG-I, U937, K562, HL-60 cells were obtained from the American Type Culture Collection 
(Rockville, MD). Total protein was extracted from each of the logarithmically growing cell 
lines, and 10 Jlg from each was subjected to Western blot analysis for p26Bcl-2 expression as 
described in the proceeding methods. Blot represents experiments repeated three times, each 
with similar results. 

Figure 10; Drug ... induced internucleosomal DNA fragmentation in HL-60 and K562 cells. 
Logarithmically growing HL-60 and K562 cells were either untreated (lanes 1 and 5, 
respectively) or exposed to 100 JlM Ara-C for 4 hours (Lanes 2 and 6), 500 nM taxol for 24 
hours (lanes 3 and 7), or I J..lM mitoxantrone for 1 hour (Lanes 4 and 8). At the end of these 
incubations, total genomic DNA was extracted for Panel A, or DNA-agarose plugs prepared for 
Panel B, from each sample, as described in the methods in the proceeding Chapter III. For 
analysis of intemucleosomal DNA fragmentation in Panel A, 1 Jlg of each was electrophoresed 
in 1.8% agarose/l X TAE gels. For analysis of high molecular weight DNA fragmentation in 
Panel B, field-inversion gel electrophoresis (FIGE)was performed. Gels were stained with 
ethidium bromide and photographed utilizing UV transillumination, and the film negatives used 
for the Figure. M represent a 123-bp DNA ladder (Panel A) or previously digested lambda 
DNA (Panel B) as markers. Gel represents results of three experiments, each with similar 
results. 

Figure 11. Expression of Bel-xL in HL-60 and K562 cells. 
Logarithmically growing HL-60 and K562 cells were either untreated (lanes 1 and 3, 
respectively) or exposed to 100 JlM Ara-C for 4 hours (lanes 2 and 4, respectively). At the end 
of these incubations, total RNA was extracted from each sample for Northern blot analysis 
presented in Panel A, as described in the methods of the proceeding Chapter Four, or total 
protein was extracted from each sample for Western blot analysis presented in Panel B, as 
described in the proceeding methods of this chapter. In contrast with HL-60 cells (lanes 1,2), 
K562 cells exhibit high endogenous levels of bel-XL mRNA, as demonstrated in Panel A (lanes 3 
and 4), and high endogenous levels of p29Bcl-XL protein (Panel B, lanes 3 and 4), which are not 
significantly altered by Ara-C treatment. 

The bel-XL eDNA probe is a 700 .. bp EcoRJ fragment in pSFFV -neo, and was the kind gift of Dr. 
Gabriel Nunez (University of Michigan, Ann Arbor, MI). Anti-Bcl-x antibody'is a rabbit 
polyclonal antiserum, and is the kind gift of Drs. Stanislaw Krajewski and John C. Reed (LaJolla 
Cancer Research Foundation, LaJolla, CAl. 
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H. The LacSwitcb inducible mammalian expression system. 

Introduction. 

The first specific aim of these studies \vas to develop an A . .YIL cell model which stably 

overexpressed p26Bcl-2. To determine the direct effect of Bcl-2 overexpression on the 

biochemical and morphological features of Ara-C-induced apoptosis, a vector system of 

inducible bcl-2 expression was originally chosen for this purpose. 

The Lac Switch Inducible Mammal1an Expression System by Stratagene is a new vector 

system \vhich has utilized elements of the specifically and elegantly regulated lactose operon 

from E. coli. In E. coli, the genes which govern the production of enzymes which metabolize 

sugars are under tight control. The lactose operon in E. coli consists of several genes in tandem, 

and include: three structural genes lac Z, lac y, and lac G, which code for enzymes involved in 

the transport and catabolism of lactose: a promoter gene lac p; an operator gene lac 0; and a 

regulatory gene lac i. \vhich codes for a lactose-operon repressor protein that binds to the 

operator gene (78, 293) (please see Figure 12). In the absence of extracellular lactose, the Lac 

repressor binds as a homotetramer to the lac operator, and therefore blocks transcription of the 

lac Z. lac y. and lac a genes, since no metabolism of lactose is necessary. When a physiologic 

inducer such as allolactose, or a synthetic inducer such as isopropyl-J3-D-thiogalactoside (IPTG) 

bind to the Lac repressor, they cause a conformational change in the repressor and effectively 

decrease the affin ity of the repressor for the operator. When the repressor is removed from the 

operator, transcription from the lactose operon resumes, the metabolizing enzymes are produced, 

and these sugars can be utilized by the E. coli cell (78, 293). This is a classic example of 

derepression as a mechanism for transcriptional regulation in biology. 

In the vector system of Stratagene's LacS\vitch Inducible Mammalian Expression System, 

the lactose operon elements have been modified, but the principle of "inducible" gene expression 

is unchanged. The gene of interest is inserted by cloning into either the eukaryotic pOPI3CAT 

or pOPRSVICA T vector, both of which contain the lac operator element. In addition, the 

separate eukaryotic vector p3 'SS contains the Lac repressor element. The vectors each contain 

different antibiotic-resistant genes (please see Figure 13). Both vectors are transfected 

simultaneously, or sequentially (p3 'SS followed by pOPI3 or pOPRSVI with the cDNA of 

interest into Lac repressor-positive cells) into a cultured cell line. The expression of the inserted 
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Materials and Methods: 

eCellline: 

HL-60 cells were purchased from American Type Culture Collection (A TCC, Rockville, rvID), 

and were continuously passaged in 1 X RPMI 1640 media (GIBCO/BRL, Grand Island, NY) 

supplemented with 10% fetal bovine serum (Intergen). Logarithmically growing HL-60 cells 

were used for all proceeding transfections. Cell cultures were routinely.tested for the absence of 

mycoplasma infection using fluorescent staining with 4' ,6-diamidine-2' -phenylindole 

dihydrochloride (DAPI, Boehringer Mannheim Corporation, Indianapolis, IN) and fluorescent 

mIcroscopy. 

eCloning ru hcl-2 cDNA insert inm pOPI3CAT vector: 

The bcl-2 cDNA was a 1.9 kb EcoRi insert in the pSFFV vector, and was a gift from Dr. Gabriel 

Nunez (University of Michigan, Ann Arbor, MI). The bcl-2 cDNA insert was cloned into the 

iVotl site of the pOPI3 vector after the CAT cassette was removed, and was ligated after the ends 

of both the insert and vector were rendered blunt by using the Klenow fragment of DNA 

polymerase I (New England Biolabs, Beverly, MA) and standard blunt cloning techniques (294). 

The blunt-cloning of the bcl-2 cDNA insert into the pOPI3 vector was facilitated by the use of 

calf intestinal alkaline phosphatase (New England Biolabs, Beverly, MA) on the linearized 

pOPI3 vector and T4 polynucleotide kinase (New England Biolabs, Beverly, MA) on the bcl-2 

cDNA insert. Ligation reactions were transformed into Epicurian Coli competent cells 

(Stratagene, LaJo II a, CA), and clones positive for a bcl-2 signal upon colony hybridization as 

outlined in Maniatis' manual (295) were analyzed for proper orientation of the bcl-2 insert. 

-DNA sequencing 2f recombinant pOPI3-bcl-2 vector: 

Dideoxy-sequencing by the recombinant pOPI3-bcl-2 vector was accomplished uSing the 

Sequenase T7 DNA polymerase Version 2.0 kit (United States Biochemical, Cleveland, Ohio). 

Purified plasmid DNA was made single-stranded by incubation with 2 N NaOH and 7.5 M 

ammonium acetate, pH 7.0 at room temperature. The ethanol-precipitated, single-stranded DNA 

was then incubated with DMSO, and the following sequencing primers from the pOPI3 vector 

flanking the insertion site for the bcl-2 cDNA : 
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5' (+) primer for pOPI3-hcl-2: (I7-mer): 5'-CAAAGAACTGCTCCTCA-3' 

3' (-) primer for pOPI3-bcl-2: (IS-mer): 5' -A TIGCCGTCA TAGCG-3' 
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The primers were allowed to anneal to the single-stranded templates at 65°C for 5 minutes, and 

the reactions allowed to cool slowly to room temperature. To the annealed template-primer were 

added 0.1 M dithiothreitol (DTT), Labeling Nucleotide Mix, 5 JlCi [a-35S] dATP, and diluted 

Sequenase Version 2.0 enzyme. The labeling reaction was allowed to proceed for 4 minutes at 

room temperature, at which time, 2.5 JlI of each template was added to each of four tubes 

(G,A,T, or C) containing the appropriate dideoxy termination mixture. The termination reaction 

was incubated at 37°C for 5 minutes, mixed with stop solution (Sequenase kit), and 

electophoresed on a 6% non-denaturing polyacrylamide gel (Gel-Mix 6, GIBCOIBRL, Grand 

Island, NY). The gel was dried and exposed to Kodak X-Omat film for autoradiography. 

eElectroporation ruw Switch vectors: 

Both p3 'SS and pOPI3-bcl-2 vectors were purified over cesium chloride density gradients as 

described in Maniatis' cloning manual (296). 50 Jlg of the Lac repressor p3 'SS vector, 

linearized with Nhe I (New England Biolabs, Beverly, MA), was electroporated into 5 x 106 

logarithmically growing HL-60 cells using a BioRad Gene Pulser (capacitance 500 JlF, voltage 

0.30 kV/cm). HL-60/p3 'SS cells were selected in 300 Jlglml hygromycin (Boehringer 

Mannheim, Indianapolis, IN) in 1 X RPMI 1640 media supplemented with 100/0 fetal bovine 

serum. Resultant hygromycin-resistant HL-60 cells were then electroporated with 50 Jlg of the 

purified recombinant pOPI3-hcl-2 vector, linearized with Nhe I (capacitance 500 JlF, voltage 

0.30 kV Icm). HL-60/p3 'SS/pOPI3-hcl-2 cells were then selected in 300 Jlglml hygromycin as 

well as 500 Jlg/ml G418 (Genetic in, GIBCOIBRL, Grand Island, NY). Resultant antibiotic­

resistant cells were then tested for induction and overexpression of Bcl-2. 

e Plating of transfected cells to obtain monoclonal popUlations: 

HL-60 cells electroporated with both p3 'SS and pOPI3-bcl-2 vectors and growing in selective 

antibiotics were further subcloned by two methods to obtain monoclonal populations with 

homogeneous expression of the components of the Lac Switch system. First, transfected HL-

60/p3 'SS/pOPI3-neo (HL-60/neo) and HL-60/p3 'SS/pOPJ3-hcl-2 (HL-60IBcl-2) cells were 

plated in soft agar containing 50% 1 X Minimal Essential Medium (MEM, Sigma, St. Louis, 
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MO), 30% FBS, and 100/0 conditioned medium from 5637 bladder carcinoma cell cultures (5637-

CM) in 0.3% agarose, as well as the appropriate concentrations of selective antibiotics. After 

incubation at 37°C with 5% C02 for two weeks, individual colonies were plucked with sterile 

pipet tips and grown in liquid 1 X RPMI 1640 medium supplemented with 10% FBS 

and the appropriate selective antibiotics. In addition, HL-60/p3' SS/pOPI3-bcl-2 cells were 

serially diluted in 96-well plates to concentration of one cell per well in IX RPM! 1640 medium 

containing 10% FBS plus the appropriate selective antibiotics. After two to three weeks, 

populations of cells growing from one original cell were used to screen for induction of Bcl-2 

expressIon. 

-Genomic DNA .run h.lo.t hybridization for presence !If bcl-2 insert: 

Total genomic DNA was isolated from numerous HL-60/neo and HL-60IBcl-2 clones growing in 

selective antibiotics as outlined in QIAamp Blood Kit (QIAGen, Chatsworth, CA). The DNA 

was rendered single-stranded by incubating with 2 M NaOH for 5 minutes at 65°C, and then 3 M 

Ammonium acetate was added. The DNA solution was then adsorbed to nitrocellulose 

membranes through a slot-blot manifold under low vacuum. The dried, UV -cross-linked dot blot 

was then hybridized with the same 1.9 kb bcl-2 cDNA insert used in cloning into the pOPI3 

vector, labelled with [a-32P]dCTP by nick translation (GIBCOIBRL, Grand Island, NY). After 

hybridization in a 10% dextran sulfate/O.l % SOS/50% formamide mixture containing denatured 

salmon testes DNA (Sigma Chemical Co., St. Louis, MO) for 20 hours at 42°, the dot blots were 

washed with 0.2X sse, 0.1 % SDS solutions at 42°C, and then exposed to Kodak X-Gmat films 

for autoradiography. 

-Iud Dctiou 2f p26Bcl-2 expression: 

After selection of HL-60 clones in hygromycin and geneticin, cells were assayed for increased 

expression of p26Bcl-2 after addition of isopropylthiogalactoside (IPTG)(Stratagene) to the 

culture media. IPTG was used in increasing concentrations from 1 to 10 mM and for increasing 

durations ranging from I hour to 7 days continuous exposure. 
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.Western.liliU analysis fru: expression!!f ~ repressor &ruI p26Bcl-2: 

The expression of the Lac repressor as well as p26Bcl-2 were determined by Western blot 

analysis using specific antibodies, according to a previously described method (297). Total 

protein was extracted from HL-60/neo and HL-60fBcl-2 cells with an extraction buffer 

containing 150 mM NaCI, 10 mM Tris-Hel, pH 7.4, 5 mM EDTA, 1.0% Triton X-I00. 

Appropriate protein amounts (50 J.lg for p38Lac repressor, 10 Jlg for p26Bcl-2) were subjected to 

10% sodium dodecyl-sulfate polyacrylamide gel electrophoresis. After electrophoresis, proteins 

were transferred to nitrocellulose sheets (0.5 A at 100 V, at room temperature) for 16 hours. The 

blots \\'ere blocked in 5?/o nonfat dry m ilk solution for 3 hours at room temperature \vith gentle 

shaking (50/0 nonfat milk [wtlvol]/phosphate-buffered saline [PBS]/0.2% sodium azide, pH 7.4). 

This was followed by incubation with the following specific antibodies for 3 hours at room 

temperature: 1 : 1 000 dilution of polyclonal rabbit antiserum to the Lac repressor (Stratagene, 

LaJolla, Calif.); 1 :260 dilution of a mouse monoclonal anti-Bcl-2 antibody (type # 124, DAKO 

Corporation, Carpenteria, Calif.), described later. After washing with nonfat dry 

milk/PBS/sodium azide solution, the blots were further incubated with anti-rabbit or anti-mouse 

peroxidase-conjugated secondary IgG antibodies, respectively. Immune complexes were 

detected with an enhanced chemiluminescence detection method by immersing the blots for one 

minute in a 1: 1 mixture of ECL chemiluminescence reagents A and B (Amersham, Amersham, 

UK) and then exposing to Kodak XCL film for a few seconds. 

• Drugs. Ara-C was purchased from Sigma Chemical Co. (St.Louis, MO). Ara-C was stored as 

powder at 4°C, and freshly prepared by dissolving in medium and sterilizing through 0.22 Ilm 

syringe filter (Millipore, Cambridge, MA). 

• Morpbology of Apoptotic Cells. After treatment with or without Ara-C 50 x 103 HL-60/neo 

or HL-60fBcl-2 cells were washed with PBS, pH 7.3 and resuspended in the same buffer. 

Cytopsin preparations of the cell suspensions were fixed and stained with Wright stain. Cell 

morphology was determined by light microscopy. Five different fields were randomly selected 

for counting at least five hundred cells. Percentage of apoptotic cells was calculated for each 

experiment. Cells designated as apoptotic were those which displayed the characteristic 

morphologic features of apoptosis including cell volume shrinkage, chromatin condensation, and 

the presence of membrane-bound apoptotic bodies (8). 
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Results; 

The bcl-2 cDNA insert was cloned into the Iac-operator-containing pOPI3CA T vector by 

standard blunt cloning techniques, enhanced by dephosphorylating the linearized vector, and by 

phosphorylating the bcl-2 insert. When the DNA of transformed bacterial clones positive for the 

presence of the bcl-2 insert by colony hybridization was screened for the orientation of the bcl-2 

insert, restriction enzyme analysis confirmed the presence of the bcl-2 insert in the pOPI3 vector 

by size when sUbjected to 1.80/0 agarose gel electrophoresis. Specific restriction enzyme tests 

\vere designed based on the cD~A. sequence of bcl-] and the unique sites in the pOPI3 vector. 

After restriction enzyme digestion and electrophoresis, positive bacterial clones were chosen in 

which the fragments released from the candidate recombinant plasm ids were of the predicted 

sizes for a recombinant plasmid containing the bcl-2 insert in the proper sense, or forward, 

orientation. Sequence analysis of the positive recombinant plasmids with the bcl-2 insert in the 

sense orientation further confinned the presence of the bcl-2 insert, the proper sense orientation, 

and in addition, that the open reading framed \vas intact. 

These positive recombinant plasm ids were transfected into HL-60/p3 'SS cells positive for 

the expression of the 38 kD Lac repressor, as shown in Figure 14, panel A. Purified and 

linearized recombinant pOPI3-bcl-2 vector was then transfected into these HL-60/p3 'SS cells, 

and when the genomic DNA of several resultant antibiotic-resistant populations were screened 

for presence of the bc/-2 insert, those with the highest intensity of signal (see Figure 14, panel 

B) were used for further induction studies. Western blots for p26Bcl-2 expression \vere 

performed after incubation of both HL-60/neo and HL-60IBcl-2 cells after various incubations 

with 1 to 10 mM IPTG for several (1 to 8) hours to several (1 to 7) days. These IPTG inductions 

were attempted in clonal populations which had grown from total suspension cultures 

immediately after electroporation, as well as those plucked from soft agar culture and those 

grown from limiting dilution of suspension culture cells. Only slight if any increase in 

expression of p26Bcl-2 was observed in over 100 HL-60IBcl-2 clones over that of HL-60/neo 

cells, as shown in a representative Western blot (Figure 14, Panel C). Of importance is the 

slight, if any, increase in p26Bcl-2 expression induced by IPTG in the last lane of this Western 

blot of HL-60IBcl-2 clones. When this one clone exhibited an increase in p26Bcl-2 expression, 

the clone was tested for its resistance to Ara-C-induced apoptosis by incubating the clonal 

population with 100 JlM Ara-C for 4 hours at 37°C, after which time, microscope slides ~·ere 
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prepared of the drug-treated cells and stained with Wright-Geimsa stain. It was observed that 

despite this increase in p26Bcl-2 level, these HL-60IBcl-2 were not resistant to Ara-C-induced 

apoptosis~ and exhibited the morphologic features of apoptosis to the same extent as identically 

treated HL-60/neo cells. 

Discussion: 

In order to develop an AML cell model which stably overexpresses p26Bcl-2, the Lac 

Switch Inducible Mammalian Expression System was used to transfect HL-60 cells with the hel-

2 eDNA. Attempts were made to induce p26Bcl-2 to a sufficiently high level to protect them 

from Ara-C-induced apoptosis. However, in over 100 HL-60IBcl-2 positive clones incubated 

with various doses and exposures of IPTG, markedly higher expression of p26Bcl-2 was not 

achieved. 

The Lac Switch inducible mammalian expression system is theoretically an ideal system to 

induce controlled expression of a gene of interest and has been previously used successfully 

(298). It is, theoretically, an invaluable tool for the study of a gene in comparison to a control 

model system which has little or no expression of the gene of interest, as is demonstrated in the 

studies by Lin and Lane. Utilizing this system, they showed that the expression of 

CCAAT/enhancer binding protein a was turned on or off in adipocytes. The system also has the 

potential to produce stable clones with induction levels of 20- to 95-fold over basal expression of 

the gene of interest, as documented by Stratagene. This, however, could not achieved in I--a-60 

cells which had been transfected with p3 'SS plus pOPI3-hel-2. 

The problems that were encountered with the Lac Switch Inducible Mammalian Expression 

System in HL-60 cells, can be summarized as follows: (a) The stability of expression and 

integration of the operator and/or the ~ac repressor in AML model was variable, as evidenced by 

inconsistency of the bel-2 signal from one clone to another. This was seen when genomic DNA 

dot blots were probed. Also, an inconsistency of the expression of the Lac repressor was 

observed over time. (b) The concentrations of IPTG needed to optimally induce the expression of 
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the bcl-2 gene in HL-60 cells could not be defined. ( c) The ability of increasing IPTG 

concentrations to correspondingly increase p26Bcl-2 expression and, in turn, modulate apoptosis, 

could not be successfully determined. (d) The appropriate IPTG concentrations necessary to 

maintain high levels of p26Bcl-2 for prolonged intervals to demonstrate their biological effect 

was unsuccessful. (e) The number copies of the bcl-2 eDNA of interest to be delivered by the 

operator vector into the target cells could not be ascertained. 

In conclusion, several attempts to optimize the Lac Switch inducible mammalian 

expression system for the induction of graded overexpression of p26Bcl-2 were unsuccessful for 

the various reasons detailed above. In addition, the Lac Switch system was considered not 

suitable for the purpose of sufficiently overexpressing p26Bcl-2 levels above endogenous levels 

in HL-60 cells to protect these cells from Ara-C-induced apoptosis. Furthermore, the Lac Switch 

system was considered not suitable for the purpose of generating different levels of p26Bcl-2 

expression in the same clones of HL-60 cells, by utilizing different levels of IPTG, in order to 

specifically study the effects on Ara-C metabolism, DNA damage and repair, and apoptosis. 

Hence, this avenue of research targetted to develop an inducible bcl-2 expression in HL-60 cells 

\\'as abandoned. 
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Figure Legend; 

Figure 14: Selection of transfected HL-60 clones positive for expression of both 
components of the LacSwitch system and attempts toward induction of overexpression of 
p26Bcl-2. 

Panel A shows Western blot analysis of HL-60 cells transfected with p3 'SS utilizing rabbit 
polyclonal antiserum for the Lac repressor. In Lane 1 is 10 J.lg total protein from E. coli strain 
1M-IIO as a positive control. In Lane 2 is 50 J.lg total protein from HL-60 parent cells. Lanes 3 
and 4 contain 50 ~g total protein from two populations transfected with p3 'SSe 

Panel B sho\vs a genomic DNA dot blot hybridized \vith bcl-2 cDNA to test for the presence of 
bcl-2 after transfection of pOPI3-bcl-..? into positive HL-60/p3' SS cells chosen from results in 
Panel A. 10 J.lg genomic DNA are probed from the following cell lines: HL-60 parental cells 
(lane 1); HL-60/p3 'SS cells (lane 2); HL-60/p3 'SS/pOPI3-hcl-2 cells (lanes 3,4). 

Panel C shows Western blot for p26Bcl-2 induction in positive HL-60/p3 'SS/pOPI3-hcl-2 
transfectants chosen from results in Panel B. 5 J.lg total protein were analyzed from several 
recombinant clonal populations after incubations with 5 mM IPTG for 3 days. 
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C. Retroviral-mediated transfer of bcl-2 cDNA to HL-6Q cells. 

Introd uction. 

An alternative technique of retroviral-mediated transfection of HL-60 cells with bcl-2 

cDNA was found to be successful in producing a new HL-60 cell line which stably 

overexpresses p26Bcl-2. 

Materials and Methods: 

• Retroviral Constructs and Transfection of HL-6Q Cells. HL-60 cells \vere maintained in 

suspension culture in RPMI 1640 medium (GIBCOfBRL, Grand Island, NY), supplemented with 

10% fetal bovine serum, as described in Part One. As described below, HL-60 cells were 

transfected with cDN A of the bcl-2 gene andlor neomycin resistance gene transduced from 

recombinant retroviruses. Recombinant expression plasmids pZIP-bcl-2 and pZIP-neo were 

constructed and packaged as infectious amphotrophic retroviruses using PA317 cells, as 

previously reported (78~ 98, 299), and w'ere the kind gifts of Drs. Toshiyuki Miyashita and John 

C. Reed (LaJolla, CA). The pZIP constructs contain long-terminal repeats (LTR) from the 

murine ~Ialoney leukemia virus, and the gag, pol, and env genes were replaced by cloning 

techniques with the neomycin resistance gene alone or in tandem with a 91 O-bp bcl-2 cDNA (98) 

corresponding to the open reading frame of the bcl-2a cDNA sequence from -57 to +800 relative 

to the A TG start site (300). 
Rctroyiral COMtrucl1 CODtliud i, PAJI' packa"n. cella ucd to InDlrKt HL-6Q cells; 

pZIP-neo construct 
pZIP-neo ""--1 LTR n,--_D_eo __ -.JH LTR ~ 

pZIP-hcl-2 construct pZlP-BcI-2 --I LTR ~~ bC/-2 H,,--_n_eo_-IH LTR ~ 

• summarized from Miyashita and Reed (98) 

1 X 105 Iml HL-60 cells were incubated with fresh filtered supernatant from confluent high titer 

producing PA317 cells containing either pZIP-bcl-2 or pZIP-neo recombinant retroviruses for 3 

days at 37°C, 50/0 CO2, The fresh supernatant was replenished every 12 hours, and retroviral 

transfer was theoretical1y enhanced by further supplementation of the cultures with 20% FBS to 

enhance cell cycling and 6 J.lg/ml polybrene (Sigma) to provide electrostatic "bridges" across the 
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target cell membranes (301). HL-60/neo and HL-60IBcl-2 cells were then selected by growth 

for two weeks in fresh medium containing 500 J..lg/ml G418 (Geneticin, GIBCOIBRL). 

HL-60fBcl-2 cells were further subcloned to homogeneity of expression by serially diluting 

100,000 logarithmically growing transfected cells in 96-well plates to a concentration of one cell 

per well in RPMI 160 medium containing 10% FBS plus 500 f.lglml G418. After two to three 

weeks, populations of cells growing from one original cells were screened for homogeneity of 

p26Bcl-2 expression utilizing immunofluorescence microscopy as described. 

• Immunofluorescent i\.nalysis of Bcl-2 Expression. Immunofluorescent analysis of p26Bc 1-2 

in HL-60/neo and HL-60/Bcl-2 cells was performed as previously described (146). HL-60/neo 

and HL-60IBcl-2 cells were attached to 35-mm-diameter sterile culture dishes with poly-L-Iysine 

(Sigma). After fixation in 3.7% formaldehydelPBS, the cells were incubated with a 1 :260 

dilution of DAKO type # 124 mouse monoclonal anti-Bcl-2 antibody in 1 % BSAlO.l% 

saponin/PBS, and the signal amplified by incubations \vith goat anti-mouse secondary IgG 

followed by rabbit anti-goat secondary IgG antibodies, both conjugated to rhodamine (Jackson 

Immuno Laboratories, West Grove, PA) (1: 1000 dilutions in 1 % BSAlO.l % saponin/ PBS). The 

specific anti-Bcl-2 antibody was raised against Bcl-2 amino acids 41-54, an epitope common to 

both Bcl-2a and Bcl-2~, as previously described (146, 302, 303). Dishes of stained cells were 

examined for Bcl-2 expression by using a Zeiss Axioplan microscope equipped with an MC-I 00 

camera exposure system, a 63x planapochromat objective lens (N.A. 1.4), an EMI 

photomultiplier (Model 9658R, EMI Gencom, Plainview, NY) operated at 1 kV, and a Keithley 

Model 480 picoameter (304). 

• Western Blot Agalysis of p26Bcl-2, p21Bax, and p29Bcl-xL Oncoprotein Expressions. The 

expression of p26Bcl-2, p21 Bax, and p29Bcl-xL oncoproteins in untreated and Ara-C-treated 

HL-60/neo and HL-60IBcl-2 cells were determined by Western blot analyses according to 

previously described method (Part B). A mouse monoclonal antibody to human Bcl-2 was used 

(type # 124, DAKO Corporation, Carpinteria, CA), described above. Rabbit anti-Bax as well as 

anti-human Bcl-x antisera were also utilized, the kind gifts of Drs. Stanislaw Krajewski and John 

C. Reed (LaJolla, CA) (61, 151, 166). Briefly, for immunoblot analyses, total protein was 

extracted from cells with a buffer containing 150 mM NaCI, 10 roM Tris-HCI (pH 7.4), 5 mM 

EDT A, I % Triton X-I00. Appropriate amounts (10 J..lg for p26Bcl-2, 50 f.lg for p21 Bax and 
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p29Bcl-XL) were mixed with electrophoresis dye (100 mM Tris-Hel, pH 6.8, 0.2% SDS, J3-

mercaptoethanol, glycerol), subjected to sodium dodecyl sulfate-polyacrylamide gel 

electrophoresis (12.5 % gel). After electrophoresis~ proteins were transferred to nitrocellulose 

sheets (0.5 A at 320 V, at 4°C) for 3 hours. The blots were blocked in 5% nonfat dry milk 

solution for 3 hours at room temperature with gentle shaking (5% nonfat milk 

[wtlvol]/phosphate-buffered saline [PBS]/0.02% sodium azide, pH 7.4). This was followed by 

incubation with the respective antibody (anti-Bcl-2, 1 :260 dilution; anti-Bax, anti-Bel-x, 

1: 1000 dilution) at room temperature for 3 hours with gentle shaking, and then with anti-rabbit 

or anti-mouse peroxidase-conjugated secondary IgG antibodies. Immune complexes \vere 

detected with an enhanced chemiluminescence detection method by immersing the blot for one 

minute in a 1: 1 mixture of chemiluminescence reagents A and B (Amersham, Amersham, UK), 

and then exposing to Kodak XCL film for a few seconds. 

• Ara-C. Ara-C was purchased from Sigma Chemical Co. (St.Louis, MO). Ara-C was stored as 

powder at 4°C, and freshly prepared by dissolving in medium and sterilizing through 0.22 Jlm 

syringe filter (Millipore, Cambridge, MA). 

• Morphology of Apoptotic Cells. After treatment with or without Ara-C 50 x 103 HL-60/neo 

or HL-60IBcl-2 cells were washed with PBS, pH 7.3 and resuspended in the same buffer. 

Cytopsin preparations of the cell suspensions were fixed and stained with Wright stain. Cell 

morphology was determined by light microscopy, as previously mentioned. Cells designated as 

apoptotic were those which displayed the characteristic morphologic features of apoptosis 

including cell volume shrinkage, chromatin condensation, and the presence of membrane-bound 

apoptotic bodies (8). 
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Results; 

Figure 15, Panel A, shows by immunofluorescence, subcellular distribution of Bcl-2 in 

HL-60/neo cells to be membranous in location, reflecting the reported distribution of Bcl-2 in the 

outer nuclear, endoplasmic reticulum, and outer mitochondrial membranes (72, 146, 303). Panel 

B shows immunofluorescent analysis for Bcl-2 expression in HL-60IBcl ... 2 cells, in which the 

subcellular distribution of Bcl-2 is the same as in HL-60/neo cells, however, the intensity is 

approximately 6.3 times higher, as measured by the photographic apparatus on the fluorescent 

microscope. Panel C shows Western blot analyses for p26Bcl-2 and p21 Bax expressions in HL-

60/neo (lanes 1 and 2) and HL-60IBcl-2 cells (lanes 3 and 4), either untreated (lanes 1 and 3) or 

exposed to 100 JlM Ara-C for 4 hours (lanes 2 and 4). These Western blot analyses demonstrate 

that Bcl-2 overexpression in HL-60IBcl-2 cells is approximately 5- to 10-fold greater than that in 

HL-60/neo cells, and does not impact on the barely detectable levels of endogenous p21 Bax 

expression. Although not shown, immunoblot analyses utilizing polyclonal anti-Bcl-x antibodies 

did not demonstrate any difference in p29Bcl-xL or p20Bcl-xS levels in HL-60/neo versus HL-

60/Bcl-2 cells. In addition, both p26Bcl-2 and p21 Bax levels remain unchanged immediately 

following Ara-C treatment. 

The preliminary test for sufficient protection of HL-60IBcl-2 cells from the effects of Ara­

C-induced apoptosis given the above mentioned level of p26Bcl-2 overexpression, was analysis 

of cellular morphology by light microscopy and Wright-Geimsa staining of Cytospin 

preparations. Figure 16 clearly demonstrates that exposure of HL-60/neo cells to 100 JlM Ara­

C, for 4 hours readily induces morphologic features of apoptosis (Panel B), including chromatin 

condensation and the budding of apoptotic bodies. However, the overexpression of Bcl-2 to 

approximately 6.3 times higher than the level in HL-60/neo cells indeed rendered HL-60IBcl-2 

cells resistant to the induction of morphologic features of apoptosis after the same Ara-C 

exposure (Panel D), and represents the successful generation of an in vitro AML model cell line 

which overexpresses intact and biologically functional p26Bcl-2. This population of HL-60IBcl-

2 cells was then utilized for the studies presented in this thesis, and the stable homogeneous 

overexpression of p26Bcl ... 2 in HL-60fBcl-2 cells has remained consistent for well over one year. 
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Discussion; 

Retroviruses are RNA viruses whose viral genes are converted into double-stranded DNA 

molecules by reverse transcription after penetration into a target host cell. This viral DNA then 

integrates into the host genome as an obligatory part of the viral replication process, and, as a 

result, the viral DNA becomes indistinguishable from other cellular genes (305). Retroviral gene 

transfer, therefore, has been optimized as a tool for introducing genes into cells. While 

electroporation or lipofection methods are reported to be among the most efficient and 

convenient methods of stable transfection of immortalized cell lines (306), it was found that 

biological infection of HL-60 cells with recombinant retroviruses, containing the neomycin­

resistance gene with or without bcl-2 cDNA, was superior for this particular cell line. This 

method, which increased the probability of stable integration of bcl-2 cDNA into the genome of 

HL-60 cells by virtue of highly active LTR components of murine Moloney leukemia virus 

within the recombinant constructs (98, 307-309), generated a reliable and consistent cell model 

to use for all the studies presented in this thesis and beyond. While the manipulation of a 

retroviral vector to include the gene of interest is labor-intensive, the use of retroviral-mediated 

gene transfer to HL-60 cells proved to be, in this case, the most valuable and efficient tool 

toward generating the desired AML cell model which stably overexpresses p26Bcl-2 to high, 

biologically significant levels. Retroviral-mediated gene transfer to HL-60 cells has also been 

found to be successful by Collins et al. (310) and Naumovski and Cleary (94). 

The use of retroviral-mediated gene transfer has great significance as a powerful tool in 

medicine. For example, cycling self-renewing bone marrow cells are important targets towards 

which therapeutic genes are delivered via retroviruses, because of the efficiency and broad host 

range of retroviruses (305). Retroviral-mediated ex vivo transfer of the adenosine deaminase 

(ADA) gene to bone marrow cells has been successful, and is one of the classic therapies of a 

severe clinical immunodeficiency by gene transfer and subsequent transplantation (305, 311, 

312). The transfer of clotting Factor IX gene and its production in skin fibroblasts by 

retroviruses has been proposed as potential gene replacement therapy for hemophilia B (313). 

Peripheral blood lymphocytes are also important targets for potential gene therapy, and have 

been studied as preclinical models for CD 18- leukocyte adhesion deficiency (LAD), severe 

combined immunodeficiency (SCID), and acquired immunodeficiency syndrome (AIDS) (314). 
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Retroviral transfer of the human mdr-l (multidrug resistance 1 gene) has been demonstrated in 

murine bone marrow cells, and can confer drug resistance to populations of cells desired for 

enrichment (3 15, 3 16). 

Most recently, transplantation of bone marrow cells transfected with bcl-2 from retroviral 

constructs was demonstrated to enable recovery of myelopoiesis after etoposide-induced 

myelosuppression, and may provide an alternative to the supplemental administration of G-CSF 

(granulocyte colony stimulating factor) (99). The transfer of bcl-2 to HL-60 AML cells 

presented in this dissertation represents a model by \vhich retroviral-mediated transfer of bcl-2 

can also produce powerful protection against chemotherapy-induced cell death. 
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Figure Legends; 

Figure 15. Immunofluorescent and Western blot analysis of retrovirally-transfected IlL-
60/neo and HL-60IBcl-2 cells. 
HL-60/neo (Panel A) and bcl-2-transfected HL-60/Bcl-2 cells (Panel B) were fixed and labelled 
for immunofluorescence using anti-Bcl-2 monoclonal antibody, as described in Materials and 
Methods. A significantly brighter and homogeneous cytoplasmic pattern of Bcl-2 localization 
can be seen in the cells in Panel B as compared to Panel A. Panel C shows Western analysis of 
p26Bcl-2 (upper panel) and p21 Bax expressions (lower panel) in HL-60/neo (lane 1 and 2) and 
HL-60IBcl-2 cells (lanes 3 and 4). Proteins in lanes 1 and 3 are from untreated control cells, 
while those in lanes 2 and 4 are from cells treated with 100 J.lM Ara-C. 50 J..lg total protein was 
used for both Western blots, and ECL exposure was 30 seconds. Data is representative of two 
individual experiments which yielded equivalent results. 

Figure 16: Morphologic evidence of Ara-C-induced apoptosis in HL-60/neo versus HL-
601Bcl-2 cells. Microscope slides of HL-60/neo (Panels A and B) and HL-60IBcl-2 (Panels C 
and D) were prepared as described in the Inethods section. Panels A and C represent non­
apoptotic morphology in untreated HL-60/neo and HL-60IBcl-2 cells, respectively. Panel B 
demonstrates the induction of apoptotic morphology, including nuclear condensation and 
apoptotic bodies in HL-60/neo cells treated with 100 f.lM Ara-C for 4 hours (HIDAC). Panel 
D demonstrates that the induction of these features is blocked in HL-60/Bcl-2 cells exposed to 
the same dose and schedule of Ara-C. 
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Figure I~ 

A. HL-601neo CELLS: Control: B. H L-60fBcl-2 C ELLS: Control: 

C. I 2 3 1 

p2IBax-...... 
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Figure 16. 

A. Hh60/neo control B. HL-60/neo + HIDAC 

C. HL-60/Bcl-2 control D. HL-60/Bcl-2 + HIDAC 
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CHAPTER III. 

Bcl-l blocks Ara-C-induced DNA fragmentation 

associated with apoptosis. but not early events 

of intracellular Ara-C metabolism. 
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CHAPTER III: Bcl-2 BLOCKS ARA-C-INDUCED DNA FRAGMENTATION 
6.\SSOCIATED WITH APOPTOSIS BUT NOT EARLY EVENTS OF INTRACELLULAR 
ARA-C METABOLISM, 

Abstract 

The effect of high intracellular levels of p26Bcl-2 in AML cells on the metabolism of high 

dose Ara-C (HIDAC) and Ara-C-induced strand breaks in genomic DNA, as well as the 

generation of large sized (5-300 kilobase) and internucleosomal DNA fragmentation associated 

with apoptotic cell death, were examined. For these studies, HL-60IBcl-2 and HL-60/neo cells 

w"ere created by retrovirally transfecting the human AML HL-60 cells with the pZIP-bcl-2 and 

pZIP-neo plasmids, respectively. Western blot and immunofluorescent analyses demonstrated 

that, as compare to HL-60/neo, HL-60/Bcl-2 cells contained significantly higher (approximately 

10 fold) p26Bcl-2 but equivalent and barely detectable levels of p21 Bax and p29Bcl-xL proteins. 

Exposure to HIDAC (10 to 100 f.lM for 4 hours) produced the lethal, kilobase-size, double­

stranded DNA fragments and internucleosomal DNA fragmentation associated with apoptosis in 

HL-60/neo but not in HL-60IBcl-2 cells. This was correlated with significantly greater loss of 

survival (by MIT assay), as well as flow cytometrically detectable and morphologically 

recognizable apoptosis of HL-60/neo cells. However, these effects were not accompanied by 

significant alterations in p26Bcl-2 levels in either of the cell types immediately following 

HIDAC treatment. Despite a striking reduction in apoptosis and the associated lethal DNA 

fragmentation, the intracellular accumulation of Ara-CTP relative to dCTP, Ara-C DNA 

incorporation and Ara-C-induced DNA strand breaks (by alkaline elution assay) were not 

significantly different between HL-60/neo and HL-60IBcl-2 cells following exposure to HIDAC. 

These results indicate that in the presence of high intracellular levels of p26Bcl-2, neither the 

intracellular metabolism and DNA incorporation of HIDAC, nor the HIDAC-induced potentially 

reparable single strand DNA breaks are significantly prevented or impaired in HL-60IBcl-2 cells. 

In contrast, the initiation of the final apoptotic cell death pathway associated with lethal, large­

sized and intemucleosomal DNA fragmentation is significantly inhibited in HL-60IBcl-2 cells. 

This indicates a distally operative protective role of p26Bcl-2 in preventing the conversion of 

Ara-C-induced early DNA damage into lethal DNA fragmentation associated with apoptosis. 
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IntroductioD 

Previous reports have demonstrated that following intracellular interaction with their 

molecular targets. anticancer drugs with diverse mechanisms of action engage the final common 

pathway of drug-induced apoptotic cell death (21, 23). A growing list of genes have been 

implicated in the regulation of drug-induced apoptosis, including bel-2, bel-x, bax, bad, and p53 

(60, 107, 147, 148, 170, 175, 317). The bel-2 gene, in particular, encodes for the p26Bcl-2 

protein which is localized to the outer mitochondria membrane, endoplasmic reticulum, and 

nuclear envelope (72, 146, 303). High intracellular levels of p26Bcl-2 have been shown to 

suppress apoptosis due a variety of antileukemic drugs including cytosine arabinoside (Ara-C) 

(98, 100). The clinical relevance of these observations is further supported by the recent 

evidence that high levels of p26Bcl-2 in patient-derived AML blasts correlate with poor outcome 

following Ara-C based chemotherapy regimens (204). Furthermore, in vitro data indicate that 

the inhibition of bel-2 expression by antisense oligonucleotides results in improved antileukemic 

activity of Ara-C (205, 206). 

Ara-C is the most commonly used agent in the treatment of AML (223). Intracellularly, 

Ara-C is phosphorylated to Ara-C triphosphate (Ara-CTP) which competes with normal dCTP 

for incorporation into DNA, and leads to the inhibition of DNA chain elongation and synthesis 

(223). However, previous studies have only correlated incorporation of Ara-C into DNA with 

the extent of its cytotoxicity in AML cells (231, 318). It is not clear how Ara-C DNA 

incorporation, which produces potentially reparable DNA strand breaks, triggers the generation 

of lethal double-stranded high molecular weight (5-300 kilobase) and internucleosomal DNA 

fragmentation associated with apoptosis (16, 22). Recently, Huang and Plunkett demonstrated 

that incorporation of nucleoside analogues into DNA is a critical event in fludarabine- and 

gemcitabine-induced apoptosis, when inhibition of incorporation into DNA by polymerase 

inhibitor aphidicolin blocked both fludarabine- and gemcitabine-induced high molecular weight 

and internucleosomal DNA fragmentation as well as apoptotic morphology in human T 

Iymphoblastoid CEM cells (3 19). The studies presented in this thesis address whether Bcl-2 

overexpression in HL-60 cells also blocks the ability of Ara-C to incorporate into and to affect 

its DNA target, and interferes in the metabolism of Ara-C leading up to early strand breaks 

which precede apoptotic cell death. In addition, in human pre-B leukemia 697 cells that had 

been retrovirally transfected with the eDNA of the bel-2 gene and over-expressed p26Bel-2 
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(697IBcl-2) cells, Ara-C-induced apoptosis was markedly inhibited, but the inhibition of cellular 

proliferation was not affected (98). However, in this study neither the expressions of other genes 

which regulate apoptosis, nor the intracellular metabolism of Ara-C was determined in 697/neo 

versus 6971Bcl-2 cells (98). Utilizing for the first time human myeloid leukemia HL-60 cells 

which have been retrovirally transfected with either the pZIP-bcl-2 or pZIP-neo plasmids, the 

present studies examine the intracellular Ara-CTP accumulation relative to dCTP levels, Ara-C 

DNA incorporation, Ara-C-induced DNA strand breaks, and Ara-C-induced DNA fragmentation 

and apoptosis following treatment with high-dose Ara-C (I-llDAC, 100 JlM Ara-C for 4 hours 

mimics clinically achievable doses of Ara-C). The aim of these studies is to define which of the 

known steps in Ara-C metabolism and DNA damage may be inhibited by Bcl-2 overexpression. 

An additional aim of these studies is to correlate the differences in Ara-C-induced apoptosis of 

HL-60IBcl-2 versus HL-60/neo cells with the expression of other genes that are known to 

regulate drug-induced apoptosis. 

Materials and Methods: 

• Drugs and Antibodies. Ara-C was purchased from Sigma Chemical Co. (St.Louis, MO). Ara­

C was stored as powder at 4°C, and freshly prepared by dissolving in medium and sterilizing 

through 0.22J..lm syringe filter (Millipore, Cambridge, MA), as described in Chapter Two. 

Mouse monoclonal antibody anti-Bcl-2 (type #124) was obtained from DAKO (Carpinteria, CA), 

and was previously described (146, 300, 301). Polyclonal rabbit antisera to human Bax and 

human Bcl-x proteins were the kind gifts of Drs. Stanislaw Krajewski and John C. Reed (LaJolla, 

CAl· 

• Transfection of Hlc60 Cells. HL-60/neo and HL-60IBcl-2 cells were generated by retroviral­

mediated transfection of HL-60 parental cells with the neomycin resistance gene alone or in 

combination with bcl-2 cDNA as described in Chapter Two. Subcloning of HL-60IBcl-2 cells 

by limiting dilution generated various clones with disparate levels of homogeneous 

overexpression of p26Bcl-2, as described in Chapter Four. Clonal population B, which 

exhibited p26Bcl-2 expression 6.3 times greater than HL-60/neo cells by immunofluorescence 

(described in Chapter Two), was used for the studies presented in this chapter. 
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• Detection of Internucleosomal Fragmentation of Genomic DNA by Agarose Gel 

Electrophoresis. Following incubations with Ara-C, total genomic DNA was extracted as 

described by Ray et al. (23). 1 x 106 control and Ara-C-treated HL-60/neo and HL-60IBcl-2 

cells were washed twice in warm phosphate-buffered saline and the cell pellets incubated with 

200 mM NaCI, 10 mM Tris-Hel, pH 8.0, 40 mM EDTA, pH 8.0, 0.5% SDS, containing 200 

ng/Ill RNase A (Sigma), 10 UIIlI RNase Tl (Sigma), for one hour at 37°C. This was followed by 

incubation with 200 mM NaCI, 10 mM Tris-HCI, pH 8.0 0.5% SDS, containing 125 ng/ml 

Proteinase K (Boehringer Mannheim, Indianapolis, IN), for 3 hours at 50°C. DNA was then 

extracted twice with phenol:chloroform (1: 1) and precipitated with 10 mM MgCI2, and two 

volumes of ethanol. Pelleted and dried genomic DNA was dissolved in 10 mM Tris-HCI, pH 

8.0, 1 mM EDT A at 4° C for four days before spectrophotometric quantitation. 1 Ilg genomic 

DNA for each condition was subjected to electrophoresis in 1.8% agarose at 30 V Icm. After 

electrophoresis, the gel was stained with 0.5 Jlg/ml ethidium bromide, destained with distilled 

water, and photographed on a UV transilluminator. Subsequently, the negative was developed 

for the DNA profile. 

• Preparation of DNA Plugs and Field Inversion Gel Electrophoresis. Formation of large­

sized DNA fragments was determined by a modification of previously described methods. (16, 

320). Intact genomic DNA-agarose plugs were prepared from control and Ara-C-treated HL-

60/neo and HL-60IBcl-2 cells by gently mixing 2 x 105 cells in warm phosphate-buffered saline 

(PBS) with an equal volume of 1.50/0 InCert agarose (FMC BioProducts, Rockland, Maine) in 

prepared in L-buffer (0.1 M EDTA, pH 8.0, 0.01 M Tris-HCl. pH 7.6, 0.02 M NaCI). This 

mixture was used to prepare 10 JlI plugs on pre-labelled 35-mm petri dishes on ice, and allowed 

to solidify over 30 minutes. The solidified DNA-agarose plugs were incubated for 96 hours at 

42°C with slow shaking in two changes of lysis solution containing 10 Jlg Proteinase KJO.2% 

Sarkosyl in L-buffer. The lysis solution was then removed, and the plugs were incubated with 

200 JlM phenylmethylsulfonylfluoride (PMSF, Sigma) in TE buffer twice for 1 hour each at 

50°C, and equilibrated with TE buffer (321). The plugs were then inserted into the wells of a 10/0 

(w/v) agarose gel (pulsed field certified, BioRad, Hercules, CA), sealed with molten agarose, and 

subjected to horizontal field-inversion gel electrophoresis (FIGE, a type of pulsed-field gel 

electrophoresis) in a BioRad apparatus. A FIGE program was specifically optimized to resolve 
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fragments 5-300 kilobase in size, employing 180 V forwardl 120 V backward pulses at 

increasing intervals from 0.4 to 3.5 seconds over 6 hours. Two set of marker DNA were used: 

lambda ladder for FIGE (BioRad) and lambda DNA digested with Hind III (Stratagene). l~fter 

electrophoresis, the gel was stained with 0.5 lJglml ethidium bromide, destained with distilled 

water, and photographed on a UV transilluminator. Subsequently, the negative was developed 

for the DNA profile. 

• Flow Cytornetric Analysis of Apoptosis and Bcl-2 Levels. The flow cytometric evaluation of 

Bcl-2 levels and apoptosis was performed according to a modification of a previously described 

method (322-324). Briefly, 2-3 x 106 untreated or drug-treated HL-60/neo and HL-60IBcl-2 

cells were centrifuged, washed in Hank's Balanced Salt Solution (HBSS) and fixed in 70% 

ethanol. The tubes containing the cell pellets were stored in -20°C for at least 24 hours. 

Following this, the cells were centrifuged at 800 x g for 5 minutes to completely remove ethanol, 

and pellets were resuspended in 40 f.ll of Phosphate-Citrate (PC) buffer at room temperature for 

30 minutes followed by washing with 1 ml 1.50/0 bovine serum albumin (BSA) in PBS. 

Subsequently, the pellets were incubated in 100 lJI of diluted mouse anti-human Bcl-2 antibody 

(DAKO, type # 124) (diluted 1: 100 in 1 % BSAlPBS) at 4°C overnight. On the following day, 4-5 

mls of 1 % BSAlPBS were added, the cells centrifuged and the resulting pellets resuspended in 

100 lJl goat anti-mouse FITC conjugated (Fab')2 antibody fragment diluted 1 :30 in 1 % 

BSAlPBS and incubated for 30 minutes at room temperature in the dark. Following this 

incubation, the cells were washed with 4-5 mls of 1 % BSAlPBS and stained with propidium 

iodide (20 J.!glml PI + 20 fJ.glml RNase A) for 30 minutes. The samples were read on a Coulter 

Elite flow-cytometer using Elite Software program 4.0 for two-color detection. Bcl-2 expression 

was measured as mean fluorescence intensity and the percentage of cells in the apoptotic sub-O t, 

as well as Gb S, G2/M phases of the cell cycle were calculated using Multicycle Software 

(Phoenix Flow Systems, San Diego, CA). 

• Morphology of Apoptotic Cells. After treatment with or without Ara-C 50 x 103 HL-60/neo 

or HL-60IBcl-2 cells were washed with PBS, pH 7.3 and resuspended in the same buffer. 

Cytopsin preparations of the cell suspensions were fixed and stained with Wright stain. Cell 

morphology was determined by light microscopy. Five different fields were randomly selected 

for counting at least five hundred cells. Percentage of apoptotic cells was calculated for each 
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experiment. Cells designated as apoptotic were those which displayed the characteristic 

morphologic features of apoptosis including cell volume shrinkage, chromatin condensation, and 

the presence of membrane-bound apoptotic bodies (8). 

• Assessment of Cytotoxicity by the MTT Assay. The MTT assay for cell cytotoxicity was 

used as previously described (325, 326). The assay is based on the conversion of the yellow 

tetrazolium salt, 3-(3,5-dimethylthiazol-2-yl)-2,5-diphenyltetrasolium bromide (MTT) to a 

colored formazan product by mitochondrial enzymes in the viable cells. HL-60/neo and HL-

60/Bcl-2 cells \vere incubated with or without Ara-C for 4 hours at 37°C. Subsequently, the 

control and drug-treated cells were washed, resuspended in drug-free medium, and 100 J.!l 

aliquots of 40,000 cells per condition were dispensed into 96-well flat-bottomed microtiter plates 

(Costar) and incubated at 37°C for an additional 20 hours. At the end of this incubation, 50 J..LI of 

a 5 mg/ml solution of MTT (Sigma, St. Louis, MO) was added to each well and the plates 

incubated for another 5 hours at 37°C. Next, the plates were centrifuged for 10 minutes at 500 x 

g. After removing the supernatants, the formazan crystals were dissolved with 150 J.!l of a 1: 1 

DMSO/ethanol solution. The absorbance, A, of the wells was measured with a Titertek 

multiscan plate reader (Flow Laboratories, Finland) at 540 nm. The percentage of cell survival 

was defined as: 

mean A of treated wells! mean A of untreated control wells x 100% 

-Intracellular Ara-CTP and dCTP Level Determination by HPLC. In extracts of 20 x 106 

untreated and Ara-C-treated HL-60/neo and HL-60IBcl-2 cells, the intracellular Ara-CTP and 

dCTP levels were determined by a High Performance Liquid Chromatography (HPLC) method 

as previously described (327, 328). Cell pellets were washed with ice-cold PBS, and 

resuspended in 10 J.!I 25% perchloric acid. After incubation on ice and centrifugation for 10 

minutes at 4000 rpm, the supernatants were mixed with 2 JlI phenol red and neutralized with 4 M 

KOH. Salts were precipitated from the extracts by centrifugation. Ribonucleotides were 

removed by periodation by the addition of an equal volume of NaI04, and 4 M methylamine. 

After mixing, the reactions were incubated at 37°C for 30 minutes. 3 JlI 1 M rhamnose was 

added to remove remaining 104-, and the samples were immediately put on ice. 100 J.!M each of 

dCTP, Ara-CTP, and dTTP standards (Sigma, St. Louis, MO) were also prepared in distilled 

water for injection prior to sample analysis. 
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The Ara-C and deoxyribonucleotide triphosphates (AraCTP and dNTPs) were analyzed 

by an HPLC system (Waters Associates, Inc., Milford, MA). This was equipped with two model 

6000A pumps, a Parsitil-l 0 SAX (Whatman Chromatography) anion-ion exchange column (250 

x 4 mm), model 490 UV detector, and a Hewlett-Packard model 1084 data and chromatography 

control system. Cellular dNTPs and Ara-CTP were separated by injecting 250 J.lI aliquots of 

standards or periodate-treated samples onto the column and run over 75 minutes at a flow rate of 

3 ml/min. Elution was started with an initial buffer composition of 6S% buffer A (O.OOS M 

NH4H2P04, pH 2.8) and 3S% buffer B (0.75M NH4H2P04, pH 3.7, Fisher Scientific Corp.) 

and ending at 100% buffer B. Retention times of nucleoside triphosphates were dCTP, 21.69 

minutes; Ara-CTP 24.75 minutes; dTTP, 29.33 minutes, as derived from analysis of standards. 

The intracellular NTP concentration was calculated by dividing the NTP amount, reflected in the 

area counts under each NTP peak, by the number of cells analyzed and the mean cell volume, 

and was expressed as picomoles NTP per million cells . 

.!.llH] Ara-C DNA Incorporation. Following treatment of HL-60/neo and HL-60IBcl-2 cells 

with [3H] Ara-C, extent of incorporation into DNA was determined as previously described 

(329). HL-60/neo and HL-60IBcl-2 cells were incubated with 100 J.lM Ara-C (Sigma) plus 20 

nM (0.5 Ci/ml) [5-3H] cytosine-~D-arabinoside (specific activity 25 Cilmmoi, Moravek 

Biochemicals, Inc., Brea, CA). After incubation for 4 hours at 37°C, total genomic DNA was 

extracted for both HL-60/neo and HL-60IBcl-2 cells as described above. 1 J.lg genomic DNA 

from each condition was measured in a scintillation counter for [3H] signal, and the counts 

converted to molarity by comparison with levels of [3H] counted in the original culture. 

• Measuremegt of DNA Damage by Alkaline Elution. Ara-C-induced single-strand breaks in 

parental DNA were measured using the alkaline elution technique, described by Kohn et al. 

(330) and previously modified for the study of drug-induced DNA damage (242, 331). 

Logarithmically growing HL-60/neo and HL-60IBcl-2 cells were co-incubated with 0.1 J.lCi/ml 

[methyl-3H] thymidine (specific activity 6S.6 Ci/mmol, Moravek Biochemicals, Brea, CA) and 

1.0 J.lM thymidine (Sigma, St. Louis, Mo) for 24 hours. Subsequently, the cells were washed and 

incubated in fresh medium (RPMI 1640 supplemented with 10% fetal bovine serum) for an 

additional 24 hours to chase the radioactive label into high molecular weight DNA. A 2-hour 
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incubation with 100 IlM Ara-C was employed to optimize for the induction of single-strand 

DNA breaks and to avoid induction of double-strand DNA breaks associated with apoptosis (23), 

125 
or the cells \vere irradiated for 50 seconds \vith 500 rads in a Cs blood product y-irradiator, to 

be used as positive controls for DNA damage. Control and Ara-C-treated cells were washed 

6 
with cold media, and 10 cells were layered onto polycarbonate filters (0.2 Jlm-pore size, 47-mm 

diameter, Costar), placed on a Swinnex funnel apparatus. Cells were then lysed in the dark with 

5 mls of a lysis solution containing 2% sodium dodecyl sulfate, 0.02 M Na2EDTA, 0.1 M 

glycine, pH 10.0, allowed to flow through by gravity. After connecting the filters with tubing to 

the pump system. 5 mls of a Proteinase K solution (0.5 mg/ml in lysis solution, Boehringer 

Mannheim, Indianapolis, IN) were added to the funnels and allowed to contact the cells for 15 

minutes. DNA was then eluted from the filters by pumping an elution solution (0.02 M EDT A 

solution adjusted to pH 12.1 with tetrapropylammonium hydroxide [Sigma, St. Louis, MO]) 

containing 0.1 % sodium dodecyl sulfate through the filters at approximately 2 mllhr using a 

Rabbit-Plus peristaltic pump (Rainin Instrument Co.~ Emeryville, CA). These conditions are 

optimized to assess single-strand DNA breaks in drug-treated cells. Three-hour fractions were 

collected in glass test tubes and processed as described (330), Filters were removed from the 

apparatus and incubated in scintillation vials with 1 ml 1.0 N Hel for one hour at 60°C, and then 

with an additional 6.25 ml 0.4 M NaOH for one hour at room temperature after vigorous 

shaking. Simultaneously, the elution apparatus was washed through with 10 mls 0.4 M NaOH 

in order to collect remaining uneluted DNA prior to the disassembly of the apparatus. One ml 

aliquots of each fraction, the NaOH wash, and the entire filters were mixed with 10 ml complete 

scintillation cocktail (Research Products International Corp., Mount Prospect, Illinois), and taken 

for counting in a liquid scintillation counter. The percentage of DNA remaining on the filter for 

each time point was plotted on a semilogarithmic scale and expressed as: 

1 - fraction counts accumulated for each point 
total accumulation + counts on filter + counts in NaOH wash 
of fraction counts 

Analysis of the elution plots included determination of the differences in retention values 

between earliest and latest points in the elution plots (expressed as ~), suggested by Kohn (332). 

In addition, slopes of the elution curves were calculated using Microsoft Excel as follows (333, 

334): 
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-
slope = L (x - x) (y - y) 

where x is the number of hours at which a fraction was collected, and x is the average time 

of all fractions collected; y is the % DNA remaining on the filters at a given time point, and y is 

the average of % DNA remaining on the filters at all time points. 

• Statistical Analysis. Sample means~ standard error of means, as \vell as significant differences 

in values obtained benveen populations of leukemic cells treated with identical experimental 

conditions (determined by unpaired t-test analyses) were obtained by using the StatView Student 

program (Macintosh). 

Results: 

• Creation and Characterization of HL-60/Bcl-2 and HL-60/neo Cells. HL-60 cells were 

stably infected with recombinant amphotrophic retroviruses carrying either neomycin (G418) 

antibiotic resistance gene alone, or in combination with cDNA of the bcl-2 gene. Thus, HL-

60/neo and HL-60IBcl-2 cell lines were established and sub-cloned by limiting dilution in 

suspension culture, as described in Chapter Two, Part C. Figure 14, Panel C, also 

demonstrated that treatment of HL-60/neo or HL-60IBcl-2 cells with 100 J..lM Ara-C for 4 hours 

did not result in any significant alteration in p26Bcl-2 or p21 Bax levels in the two cell types 

(HL-60/neo: lane 2 versus lane 1; HL-60IBcl-2: lane 4 versus lane 3). 

• Apoptosis and the Associated DNA Fragmentation in Ara-C Treated Hk60/neo versus 

Hk601Bcl-2 cells. HIDAC (high-dose Ara-C) is an optimized dosage and schedule of Ara-C 

which has been used successfully clinically to overcome classical resistance to conventional 

doses of Ara-C, including decreased intracellular Ara-CTP generation and incorporation into 

DNA (223, 335-337). Pharmacokinetic studies in patient-derived serum samples as well as in 

bone marrow cells have demonstrated that peak plasma concentrations achieved in AML patients 
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given infusions of3g1m2 (high-dose), range from 52.25 ± 32.01 J.1M (338) to 160 ± 119 J.1M (339, 

340). Previous studies in our laboratory have documented 10 to 100 J.1M Ara-C as high doses 

which are sufficient to induce internucleosomal DNA fragmentation in HL-60 parental cells (23) 

before reaching a plateau in its effect. Similarly, Figure 17, Panel A demonstrates that exposure 

to 1.0, 10.0, or 100 J..lM Ara-C produced intemucleosomal DNA fragmentation in the genomic 

DNA extracted from HL-60/neo (lanes 2,3 and 4, respectively) but not in the genomic DNA of 

HL-60IBcl-2 cells (lanes 6, 7, and 8, respectively). Figure 17, panel B, shows the results of the 

field inversion gel electrophoresis of DNA plugs derived from untreated HL-60/neo (lane 1) or 

HL-60/Bc 1-2 cells (lane 4), or from the t\VO cell types treated \vith 10 or 100 JlM Ara-C (HL-

60/neo: lanes 2 and 3; HL-60/Bcl-2: lanes 5 and 6, respectively). Panel B demonstrates that 

DNA fragments ranging from approximately 4 to 300 kilobase in size were observed more in 

HL-60/neo cells treated with 100 versus 10 JlM Ara-C, but no significant DNA fragmentation 

was observed in Ara-C treated HL-60/Bcl-2 cells. Incidentally, in HL-60/neo cells, 

intemucleosomal DNA fragmentation did not increase when the cells were exposed to 100 

versus 10.0 JlM Ara-C (Figure 17, Panel A, lanes 4 versus 3), demonstrating a possible plateau 

in response to increasing concentrations of Ara-C in HL-60 cells. 

Table III shows the results of flow cytometric evaluation of Bcl-2 levels, measure as the 

mean fluorescence intensity of FITC, as well as the evaluation of apoptosis detected as the 

percentage of cells in the sub-G J phase in untreated and Ara-C treated HL-60/neo and HL-

601Bcl-2 cells, although apoptosis was not higher in cells treated with 100 versus 10 J..lM Ara-C. 

Flow cytometric evaluation showed markedly higher Bcl-2 expression in the untreated HL-

601Bcl-2 versus HL-60/neo cells, which did not significantly change following treatment with 

1.0, 10.0, or 100 J.1M Ara-C. Table III clearly demonstrates that these doses of Ara-C produce 

significantly higher percentages of HL-60/neo cells exhibiting reduction in DNA content below 

2C or diploid level on flow cytometric histograms, indicative of apoptosis (341, 342) than in HL-

60/8cl-2 cells. Table III also highlights that immediately following the induction of apoptosis 

in HL-60/neo cells, neither the apoptotic (sub-G t ) nor the non-apoptotic population of G t + S + 

G2/M phases) showed a change in Bcl-2 expression. In HL-60/neo versus HL-60IBcl-2 cells, 

Ara-C-induced apoptosis was also determined by light microscopy by estimating the percentage 

of cells demonstrating the characteristic morphologic features of apoptosis. Table IV shows that 

following treatment with 1.0 to 100 f..lM of Ara-C for 4 hours, a significantly greater percentage 
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of morphologically recognizable apoptotic cells were observed in HL-60/neo versus HL-60IBcl-

2 cells. However, Table IV also demonstrates that this exposure to Ara-C produced 

significantly greater cytotoxicity in HL-60/neo versus HL-60/Bcl-2 cells, although the difference 

in cytotoxicity, as detennined by the MTT assay, was much less than the difference in apoptosis 

of HL-60/neo versus HL-60/Bcl-2 cells. This may reflect the difference in the effect of the Ara­

C treatment on the two disparate biologic fates being assessed by the two separate assays. 

• Intracellular Metabolism of Ara-C and Alkaline Elution Profile of DNA in Hk60/neo 

versus HL-60iBcl-2 Cells. As compared to HL-60/neo, the resistance of HL-60/Bcl-2 cells to 

Ara-C-induced lethal DNA fragmentation and apoptosis raises the question whether these cells, 

following exposure to Ara-C have decreased accumulation of Ara-CTP, Ara-C DNA 

incorporation of Ara-C-induced DNA strand breaks. Table V shows that following treatment of 

HL-60/Bcl-2 cells with 100 J..lM Ara-C for 4 hours, Ara-CTP accumulation, the decline in dCTP 

levels and Ara-C DNA incorporation \vere not significantly different from HL-60/neo cells. 

These data indicate that the initial, or proximal, steps of Ara-C metabolism are unimpaired in 

those cells that possess high intracellular levels of p26Bcl-2. Figure 18 demonstrates the 

alkaline elution profile of DNA of HL-60/neo or HL-60/Bcl-2 cells which had been treated with 

100 J..lM Ara-C for 2 hours, with irradiated cells (500 rads over 50 seconds) serving as the 

positive controls. This dose and exposure interval to Ara-C were chosen because they had 

previously been demonstrate to not induced double-stranded DNA fragmentation associated with 

apoptosis (32). In addition, in the present studies, the conditions for alkaline elution had been 

optimized for the detection of single-strand breaks. As shown in Figure 18, neither the total 

eluted DNA at pH 12.1 over 18 hours, represented as the percent of DNA remaining on the filter, 

nor the slope of elution of DNA, nor calculations from the difference in percent DNA remaining 

on the filter between the earliest and the latest 3-hourly time-points, were significantly different 

in HL-60IBcl-2 versus HL-60/neo cells (p > 0.05) (see data in Tables VI and VII). It is 

note\\l'orthy that significantly more DNA with strand breaks (p < 0.01) could be eluted from the 

filters from irradiated versus Ara-C treated cells. This has also been previously noted (243). 

However, there was no significant difference in the total amount of eluted DNA at 12 hours or 

the slope of the elution of DNA from the irradiated HL-60/neo versus HL-60IBcl-2 cells (p > 

0.05). 
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n" " ISCUSSIOQ; 

In human myeloid leukemia ceI1s, the cytotoxic effects of Ara-C have been correlated with 

the intracellular accumulation of its lethal metabolite Ara-CTP and its incorporation into DNA, 

which causes slowing of nascent DNA chain elongation, inhibition of DNA synthesis, resulting 

in DNA strand breaks (223, 237, 243, 246), as well as endoreduplication leading to chromosomal 

abnormalities (225, 232-234). Exposure to clinically achieveable doses of Ara-C (10 or 100 JlM 

for approximately 4 hours) ultimately results in lethal, large size, double-stranded or 

internucleosomal DNA fragmentation associated \vith apoptosis (22, 23). .A.s discussed above, 

previous studies had documented that high intracellular levels of p26Bcl-2 block Ara-C-induced 

internucleosomal DNA fragmentation and other features of apoptosis (98). In the present 

studies, these findings are confirmed with respect to the treatment of human AML cells with 

high-dose Ara-C (see Figure 17). In addition, the presence of high p26Bcl-2 levels are 

demonstrated to have no significant effect on the intracellular accumulation of Ara-CTP relative 

to dCTP, Ara-C DNA formation and Ara-C-induced DNA strand breaks detectable by alkaline 

elution analyses. 

To examine the effect of overexpression of p26Bcl-2 on Ara-C metabolism, Ara-C­

mediated perturbations in genomic DNA and subsequent Ara-C-induced apoptosis, HL-60IBcl-2 

and HL-60/neo cells were created by retroviral transfection of HL-60 cells with the pZIP-bcl-2 or 

pZIP/neo plasmids (87). In addition, clonal populations of HL-60IBcl-2 cells that 

homogeneously overexpressed p26Bcl-2 approximately 5- to lO-fold greater by Western blot 

than the level of expression in HL-60/neo were isolated by subcloning by limiting dilution. 

Compared to p26Bcl-2, these cells possessed significantly lower p21Bax levels, although its 

expression was similar in the two cell types. Therefore, consistent with a previous hypothesis, 

HL-60IBcl-2 cells containing significantly higher p26Bcl-2 to p21 Bax levels, were resistant to 

HIDAC-induced apoptosis (32). Coincident with HIDAC-induced apoptosis, p26Bcl-2 to 

p21 Bax levels did not significantly change in HL-60/neo cells immediately following HIDAC 

exposure. In addition, immediately after HIDAC treatment flow cytometric analysis of the 

surviving population of HL-60/neo cells did not demonstrate a statistically significant rise in 

Bcl-2 (Table III). These findings are novel with respect to Ara-C-induced apoptosis of human 
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leukemic cells. However, in the present studies, the expression of Bad or other recently 

described Bcl-2-related gene products have not yet been examined (175, 178). 

The demonstration that in HL-60/Bcl-2 versus HL-60/neo cells, HIDAC-induced apoptosis 

was blocked despite similar accumulation of Ara-CTP to dCTP and incorporation of Ara-C into 

DNA, suggests that high p26Bcl-2 levels may interfere in the subsequent HIDAC-induced DNA 

perturbations that culminate into lethal, double-stranded and endonucleolytic DNA 

fragmentation. This is despite the finding that the alkaline elution profiles at pH 12.1 of DNA of 

HL-60/Bcl-2 versus HL-60/neo cells follo\ving a t\vo-hour treatment with HIDAC, conditions 

optimized to detect the potentially reparable single-strand D}';A breaks, did not reveal significant 

differences in either the total eluate or the slope of the DNA elution curves generated in either 

cell line. This suggests that following the incorporation of Ara-C into DNA and the subsequent 

generation of DNA strand breaks, further step(s) involving the activation of the endonuclease(s) 

take place, resulting in lethal double-strand DNA damage, and it is these step(s) that are inhibited 

by high p26Bcl-2 levels. Therefore, it could be hypothesized that the cascade of events leading 

to HIDAC-induced apoptosis may be separated into proximal~ potentially separable events which 

are unaffected by, and distal steps resulting in lethal DNA damage that are regulated by the 

intracellular p26Bcl-2 levels. Notably, this also occurs in HL-60 cells overexpressing p29Bcl­

xL (343). In previous reports, similar observations were made with respect to p26Bcl-2-

mediated inhibition of 5-fluorodeoxyuridine (102), etoposide- (103), or taxol-induced apoptosis 

(104) which have also supported this hypothesis that Bcl-2 still allow·s drugs to affect their 

targets, yet inhibits only the late manifestations of apoptosis. While Grem et al. have established 

a chronology in DNA damage events induced by Ara-C and manifesting in double-strand DNA 

fragmentation (246), an alternative hypothesis might be that the accumulation of Ara-CTP 

initiates a death pathway separate from Ara-C DNA incorporation and DNA single-strand 

breaks, and indirectly promotes apoptosis. This pathway that still results in endonucleol)1ic 

DNA degradation and apoptosis, may involve protein kinases which have been shown to be 

activated by Ara-C treatment, and may be the target of the anti-apoptotic action of p26Bcl-2 

(259, 261), as described in the Introduction, Chapter One of this dissertation. 
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During the preparation of this chapter, Huang et al. further defined high molecular weight 

DNA fragmentation (50-kb size assessed by pulsed-field gel electrophoresis) as a critical event 

in fludarabine- and gemcitabine-induced apoptosis in human leukemia CEM cells (344). They 

reported that high molecular weight DNA fragmentation could be distinguished from low 

molecular weight internucleosomal DNA fragmentation by their differential requirements for 

calcium. In their studies, drug-treated cells still exhibited morphologic features of apoptosis 

even when only low molecular weight internucleosomal DNA fragmentation was inhibited by 

Ca2
+ chelation (344). However, when nucleoside analogue incorporation into DNA was 

inhibited by aphidicolin as previously reported, neither high molecular \veight DNA 

fragmentation or low molecular \V"eight intemucleosomal DNA fragmentation or morphologic 

features of fludarabine- and gemcitabine-induced apoptosis occurred (319), further suggesting 

that DNA incorporation itself is a critical event for apoptosis (and cytotoxicity), and consistent 

with previous literature (231, 232). In the present studies in the HL-60/neo versus HL-60IBcl-2 

cell models described here, the lethal DNA damage due to Ara-C has been defined as double­

strand DNA fragmentation of high molecular ""eight (5 to 300 kilobase) and low molecular 

weight internucleosomal sizes, distal to single strand breaks generated upon incorporation 

of Ara-C into DNA. Furthermore, while neither the essential incorporation of Ara-C into DNA 

nor generation of single-strand breaks by Ara-C are affected by p26Bcl-2 overexpression, it is 

only this eventual double-stranded DNA damage which is inhibited by Bcl-2. Although 

these findings help in providing a better understanding of the steps in the cascade of HIDAC 

metabolism and DNA perturbations that are not influenced and those that are inhibited by the 

anti-apoptotic action of p26Bcl-2, they do not specify the precise steps that are the targets for 

this activity. As mentioned in the Introduction in Chapter One, several reports have presented 

evidence to demonstrate one or the other biochemical mechanism underlying the anti-apoptotic 

effect of p26Bcl-2 (70). These have included (a) an anti-oxidant effect (120, 121 ); (b) inhibition 

of the intracellular calcium flux from the endoplasmic reticulum to mitochondria (10, 127); (c) 

the association with important R-ras and Raf-mediated signal transduction pathway(s) (134, 

137); and (d) blocking nuclear localization of transcription factors that may promote apoptosis 

(142, 144). It remains to be elucidated whether one or more of these mechanisms are operative 

distally in the HIDAC-induced steps leading to the lethal DNA fragmentation and apoptosis of 

AML cells. It will also be interesting to study the fate of this Ara-C-induced damage over time 

given a cell population's relative level of p26Bcl-2, and to study whether p26Bcl .. 2 allows 
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increased repair of Ara-C-induced DNA breaks to take place, as addressed in Chapters Four 

and Five, respectively, of this dissertation. A clear understanding of these aspects may provide 

insights into developing more targeted and selective anti-AML treatments involving HIDAC. 

Figure Legends: 

Figure 17: Ara-C-induced internucleosomal and high molecular weight DNA 
fragmentation in HL-60/neo versus HL-60IBcl-2 cells. For Panel A, HL-60/neo (lanes 1 to 4) 
and HL-60IBcl-2 cells (lanes 5 to 8) were treated with 1.0, 10.0, or 100.0 J..lM Ara-C for 4 hours. 
Following these treatments, equal amounts, (1.0 J.1g) of purified genomic DNA was 
electrophoresed in a 1.8% agarose gel (Panel A) to detennine intemucleosomal DNA 
fragmentation. DNA fragments in each of these lanes are from cells treated as follows: lanes 1 
and 5, untreated cells; lanes 2 and 6, 1.0 JlM Ara-C; lanes 3 and 7, 10.0 J..lM Ara-C; lanes 4 and 8, 
100.0 J.1M Ara-C. For Panel B, HL-60/neo (lanes 1 to 3) and HL-60IBcl-2 cells (lanes 4 to 6) 
were treated with 10 or 100 JlM Ara-C for 4 hours. Subsequently, field inversion gel 
electrophoresis of the DNA plugs was performed to determine large-size DNA fragments (Panel 
B). DNA fragments in each lane are from cells treated as follows: lanes 1 and 4, untreated cells; 
lanes 2 and 5, 10.0 J.1M Ara-C; lanes 3 and 6, 100 J..lM Ara-C. M represents marker DNA in both 
panels. Data is representative of three separate experiments, each with similar results. 

Figure 18: The profiles of alkaline elution of DNA from Ara-C treated or irradiated 
(positive control) HL-60/neo (top) and HL-60IBcl-2 (bottom) cells expressed as the percent 
DNA remaining on the polycarbonate filters (for the methods, see text). Data points on the 
curves represent the means of eluted DNA in three-hourly fractions collected over 18 hours 
(mean of three experiments, with standard error of mean [SEM] tabulated in Table VI). The 
results demonstrate that there is no significant difference in the amounts or the slope of the 
elution of DNA in Ara-C treated HL-60/neo versus HL-60IBcl-2 cells (see data in Tables VI and 
VII). 
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TABLE III. 

FLOW CYTOMETRIC DETERMINATION OF Bcl-2 LEVELS IN APOPTOTIC AND NON­
APOPTOTIC HL-60/neo VERSUS HL-60IBcl-2 CELLS FOLLOWING ARA-C TREATMENT: * 

CQnditi~n; o{q ApQptQti~ ~~IIS: FITC-B~I-2; °19 N~n-ApQPtQti~ cell~: FITC-B~I-2: 

(sub-G1-phase) (G1 + S + G1) 

12 HL-fiDlD~Q ~~1I5: 

control 1.08 ± 0.27 6.39 ± 0.63 95.62 ± 5.67 18.61 ± 3.80 

1 J..lM Ara-C, 4 hr 8.54 ± 2.53 6.48 ± 1.28 90.10 ± 5.19 22.67 ± 4.18 

10 JiM Ara-C, 4 hr 24.68 ± 3.65 7.87 ± 0.80 73.57 ± 6.69 23.09 ± 3.98 

100 J..lM Ara-C, 4 hr 17.44 ± 3.39 7.40 ± 0.68 82.47 ± 7.76 22.04 ± 3.44 

II. HL-fiOlBcl-l ~~II~: 

control 1.48 ± 0.25 49.28 ± 3.69** 99.07 ± 0.51 158.42 ± 26.01 ** 

1 J..lM Ara-C, 4 hr 2.00 ± 0.21 ** 54.28 ± 3.17** 98.70 ± 0.97** 169.55 ± 22.70** 

10 JlM Ara-C, 4 hr 1.72 ± 0.19** 51. 74 ± 3.95** 98.95 ± 1.22** 165.52 ± 24.26** 

100 JlM Ara-C, 4 hr 1.80 ± 0.21 ** 51.16 ± 3.79** 99.05 ± 1.26** 161.75 ± 27.62** 

* Values represent means ± S.E.M. for n=4 experiments. 

99 

** Values obtained in identically treated HL-60/neo and HL-60IBcl-2 cells are significantly different 
(p < 0.001). 
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TABLE IV. 

MORPHOLOGIC EVIDENCE OF ARA-C-INDUCED APOPIOSIS 
AND INHIBITION OF VIABILITY IN 

HL-60/neo VERSUS HL-60IBcl-2 CELLS: 

100 

% APOPTOTIC CELLS:* 
(morphology) 

% INHIBITION OF VIABILITY:* 
(by MTT assay) 

Condition; HL-60/neo: HL-60IBcl-2: HL-60/neo: Hk60-lBcl-2: * * 

control 0.33 ± 0.13 0.08 ± 0.08 

1 JiM Ara-C, 4 hr 10.48 ± 1.81 0.33 ± 0.13** 33.70 ± 7.40 15.70 ± 2.40 

5 J.lM Ara-C, 4 hr ND ND 46.00 ± 6.60 17.00 ± 2.60 

10 J.lM Ara-C, 4 hr 26.26 ± 4.48 0.50 ± 0.16** 51.70 ± 6.50 33.70 ± 4.33 

50 J.lM Ara-C, 4 hr ND ND 59.30 ± 0.70 42.60 ± 4.80 

100 J.lM Ara-C, 4 hr 19.33 ± 4.74 0.82 ± 0.21 ** 68.30 ± 3.20 46.30 ± 6.40 

* Values represent mean ± S.E.M. for n=4 experiments. 
** Values obtained for identically treated HL-60/neo versus HL-60IBcl-2 cells are significantly 
different (p < 0.01). 
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TABLE V. 

dCTP (pmols/106 cells) 

6 Ara-CTP (pmols/l0 cells) 

Ara-C DNA (pmolslJ.lg DNA) 

INTRACELLULAR METABOLISM OF ARA-C 
IN HL-60/neo AND HL-60IBcl-2 CELLS:* 

HL-60/neo: HL-6Q/Bcl-2: ** 

Control: + HWAC: Control: + HIDAC: 

4.97 ± 0.45 3.12 ± 0.52 3.63 ± 0.46 3.41 ± 1.44 

31.29 ± 2.11 36.21 ± 6.18 

2.70 ± 0.82 3.08 ± 0.52 

101 

* For the above Table, HL-60/neo and HL-60/Bcl-2 cells were incubated with or without 100 JlM 
Ara-C for 4 hours = HIDAC, neutralized, periodated, and acid-soluble cell extracts were analyzed by 
HPLC for intracellular dCTP and/or Ara-CTP levels. Alternatively, following incubation with 100 
J.1M (3HI Ara-C for 4 hours, cells were pelleted, DNA purified as described in Materials and Methods, 
and (3H] Ara-C DNA incorporation was determined and expressed as pmols/Jlg DNA. 

** Values obtained in identically treated HL-60/neo and HL-60IBcl-2 cells are not significantly 
different (p > 0.05). 
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TABLE VI. 

ALKALINE ELUTION IN HL-60/neo VERSUS HL-60/Bcl-2 CELLS; 

Condition: 

Control; * _ 
3 hr fraction 
6 hr fraction 
9 hr fraction 

12 hr fraction 
15 hr fraction 
18 hr fraction 

100 UM Ara-C. 2 hrs;* 
3 hr fraction 
6 hr fraction 
9 hr fraction 

12 hr fraction 
15 hr fraction 
18 hr fraction 

500 rads, 0.8 min:** 
3 hr fraction 
6 hr fraction 
9 h r fraction 

12 br fraction 
15 hr fraction 
18 br fraction 

0/0 DNA Remaining on Filter: 
HL-6Q/neo: HL-60/Bcl-2: 

96.20 ± 0.36 
91.07 ± 0.32 
85.96 ± 0.36 
79.07 ± 0.09 
72.09 ± 0.18 
62.59 ± 0.93 

93.75 ± 0.42 
87.08 ± 1.71 
80.68 ± 0.98 
73.36 ± 1.62 
63.52 ± 3.92 
53.80 ± 5.75 

98.07 
54.21 
22.70 
13.12 
8.49 
5.64 

94.92 ± 0.76 
90.70 ± 1.36 
86.99 ± 1.61 
82.02 ± 1.84 
75.67 ± 2.49 
70.70 ± 1.64 

95.67 ± 0.15 
89.91 ± 2.42 
83.86 ± 5.12 
77.82 ± 7.34 
69.50 ± 1.04 
60.89 ± 1.34 

98.99 
43.99 
12.33 
6.14 
4.44 
3.31 

* Values represent mean ± S.E.M. for n = 3 experiments. 
** Values represent mean of 2 experiments. 
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TABLE VII. 

ALKALINE ELUTION IN HL-60/neo VERSUS HL-60/Bcl-2 CELLS: 

HL-60/neo: HL-60/Bcl-2: 
Condition: Slope of Elution Curve: Slope of Elution Curve: 

100 J.1M Ara-C, 2 hrs:** 34.730/0 ± 0.95 -2 .. 12 ± 0.05 -1.97 ± 0.35 

500 rads, 0.8 min:**· -7.79 -6.09 

* 6. (delta) represents the range of the percentage of DNA eluted from the filter under alkaline 
conditions between the earliest time point (3-hr fraction) and the latest time point (1 8-hr fraction), 
and represents the total amount of DNA eluted. 

** Values represent mean ± S.E.M. for n = 3 experiments. Values obtained in identically treated 
HL-60/neo and HL-60IBcl-2 cells are not significantly different (p > 0.05) .. 

*** Values represent mean of 2 experiments. A values obtained in identically treated HL-60/neo and 
HL-60/Bcl-2 cells are not significantly different (p > 0.05). 
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CHAPTER IV. 

A. Disparate levels of overexpression of p26Bcl-2 govern 

the response to Ara-C-induced apoptosis 

and cytotoxicity over time. 

B. bcl-2 expression is induced in human AML cells 

which survive treatment with high-dose Ara-C. 
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CHAPTER IV; 

A. DISPARATE LEVELS OF OVEREXPRESSION OF p26Bcl-2 GOVERN THE 
RESPONSE TO ARA-C-INDUCED APOPTOSIS AND CYTOTOXICITY OVER TIME: 

lL... bel-2 EXPRESSION IS INDUCED IN HUMAN AML CELLS WHICH SURVIVE 
TREATMENT WITH ruGH-DOSE ARA-C. 

Abstract: 

The effect of the level of endogenous p26Bcl-2 expreSSIon In three disparate clonal 

populations of retrovirally-transfected HL-60/Bcl-2 cells on the fate on Ara-C-induced DNA 

damage was examined and compared with identically treated HL-60/neo cells. HL-60IBcl-2 

clones with approximately two-fold, four-fold, and six-fold greater p26Bcl-2 expression, by 

immunofluorescence, as compared to HL-60/neo cells were demonstrated to be resistant to Ara­

C-induced high molecular weight DNA fragmentation, low molecular weight internucleosomal 

DNA fragmentation, morphologic features of apoptosis, and inhibition of cell viability after 

HIDAC treatment. However, clones with four-fold and six-fold greater p26Bcl-2 expression 

remained resistant up to 48 hours after Ara-C treatment, while clones with only two-fold greater 

p26Bcl-2 expression showed indications of the induction of Ara-C-induced apoptosis and 

significant inhibition of cell viability by 12 hours after HIDAC treatment. The ability of Ara-C 

to inhibit cell viability was found to be inversely correlated to the amount of p26Bcl-2 

overexpression, as assessed by the MIT assay. In the second part of this chapter, Bcl-2 

expression itself was examined in cells surviving HIDAC treatment. By Western blot, p26Bcl-

2:p21 Bax ratios were demonstrated to increase over time after HIDAC treatment in all cell lines 

examined, by virtue of increase in p26Bcl-2 levels but no significant modulation of p21 Bax 

levels. In all cell lines presented, increased Bcl-2 levels were confirmed by immunofluorescence 

and flow cytometry. To determine the molecular level at which this increase in Bcl-2 in 

surviving cells occurs, the ribonuclease protection assay (RP A) was utilized. While not readily 

detectable in HL-60/neo cells, bel-2 mRNA was found to be induced in HL-60IBcl-2 cells 

beginning at 2 hours after cells were first exposed to Ara-C. Concomitant treatment with RNA 

synthesis inhibitor actinomycin 0 abrogated Ara-C-mediated increases in bel-2 mRNA as \vell as 

increased Bcl-2 protein levels by flow cytometry, suggesting that this increase occurs at the level 

of transcription. These increases in Bcl-2 levels in surviving cells were also found to be 
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biologically relevant in previously treated and surviving HL-60/neo cells, which exhibited lower 

Ara-C-mediated inhibition of viability by MTT assay and lower amounts of Ara-C-mediated 

total DNA breaks by the TUNEL assay upon second treatment with various concentrations of 

Ara-C. 

Taken together, these data indicate that a threshold level for p26Bcl-2 expression exists 

which can extend protection of HL-60 cells against the eventual induction of Ara-C-induced 

apoptosis. These data demonstrate that following HIDAC treatment, AML cells which survive 

and do not exhibit features of Ara-C-induced apoptosis acquire increased Bcl-2 levels regardless 

of endogenous levels in untreated control cells. This increase in Bcl-2 is induced at the level of 

transcription and represents a biologically significant modulation in anti-apoptotic gene 

expressions. These studies simulate clinical treatment regimens in AML and illustrate potential 

for the acquisition of drug-resistance through the up-regulation of bcl-2 during treatment 

schedules. 

Introd uction; 

In Chapter Three, it was demonstrated that Bcl-2 overexpression in HL-60 AML cells 

blocks the late manifestations of Ara-C-induced apoptosis including high molecular weight DNA 

fragmentation and low molecular weight intemucleosomal DNA fragmentation, as well as 

morphologic features of apoptosis. Because Bcl-2 overexpression in patient-derived AML blasts 

has been correlated with poor response to chemotherapy regimens (204), it is important to define 

the level of Bcl-2 which is responsible for this hindrance. The HL-60IBcl-2 cell model used for 

the studies in Chapter Three expressed p26Bcl-2 at a level 5- to 10-fold higher than HL-60/neo. 

The studies in this Chapter Four examine the effect of disparate levels of Bcl-2 expression on the 

fate of residual DNA damage induced by high-dose Ara-C (HIDAC) in an attempt to identify a 

threshold level for protection against Ara-C-induced apoptosis by intracellular p26Bcl-2 protein. 

The other HL-60IBcl-2 clonal populations utilized here have been characterized according to 

level of homogeneous overexpression of Bcl-2, have intermediate levels of Bcl-2 protein less 

than that in the HL-60IBcl-2 cells used for the studies in Chapter Three. 

In addition, the acquisition of drug resistance in residual cancer cells after chemotherapy 

treatment has also been documented to playa significant role in the relapse of cancers and the 
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failure of treatment. Historically, increased drug resistance has been thought to be due to 

selection of drug-resistant cells among the cancerous population, but recently has also been 

documented to be due to induction and up-regulation of drug-resistance genes (345). These 

drug-resistance genes include the mdr-l gene which encodes for a classical P-glycoprotein 

transmembrane, energy-dependent drug-efflux pump which decreases the intracellular 

accumulation in human cancers of several common hydrophobic anticancer drugs including 

anthracycline antibiotics such as adriamycin, vinca alkaloids such as vinblastine, and 

epipodopyllotoxin derivatives, as well as colchicine (346-348). Chaudhary and Roninson have 

demonstrated by reverse transcription-PeR the increased expression of mdr-l in human tissues 3 

to 5 days foHowing chemotherapeutic drug treatment (349). Hu et al. have most recently 

demonstrated that the rapid up-regulation of mdr-l RNA expression by short treatment with 

anthracyclines, VP-16, and vinca alkaloids in a variant human mdr+ cell line CEM! A 7R (345). 

In addition, Zhao et al. found that mdr-l RNA levels were elevated in mouse hepatoma cells 

after dexamethasone treatment by transcriptional control demonstrated by nuclear run-on 

experiments (350). These studies lend credence to the suggestion that induction of the 

expression of drug resistance genes may be responsible for the further development of drug­

resistant tumors and unresponsive disease. 

Since HL-60 cells themselves exhibit Bcl-2 expression, it is therefore worthwhile to 

study the effects of disparate levels of Bcl-2 on drug-induced DNA damage, and conversely, the 

effects of Ara-C on the levels of Bcl-2 after treatment. It has not been extensively studied 

whether Bcl-2 levels are modulated after drug treatment and whether their induction leads to the 

acquisition of drug-resistance over time against drugs which do not affect mdr activity. The 

present studies examine the late manifestations of Ara-C-induced apoptosis in three HL-60IBcl-2 

clonal populations over time after HIDAC treatment as compare to HL-60/neo, and examine the 

effects of this treatment on the expression of Bcl-2-related proteins over time. These studies test 

the hypothesis that the level of Bcl-2 overexpression in HL-60IBcl-2 cells governs the fate of 

Ara-C-induced DNA damage over time after treatment. An additional question whether any 

increases in intracellular Bcl-2 levels in cells surviving after Ara-C treatment are due to selection 

of cells which exhibit higher Bcl-2 expression in any of the populations, and/or due to actual 

induction of bcl-2, will also be addressed. 



www.manaraa.com

109 

Materials and Metbods: 

-Drugs and Antibodies. Ara-C (Sigma, St. Louis, MO) was prepared as described in Chapter 

Two. Actinomycin D was also purchased from Sigma, and a 5 mglml stock was made in DMSO. 

Cycloheximide (Sigma) was prepared as a 5 mg/ml stock in deionized water. Antibodies for 

Bcl-2-related oncoproteins were obtained from the sources listed in Chapter Two. 

-Retroviral Constructs and Transfection of Hk6Q cells. HL-60/neo and HL-60IBcl-2 clonal 

populations were generated by retroviral-mediated transfection and subcloning by limiting 

dilution as described in Chapter Two. 

-Detection of Internucleosomal Fragmentation of Genomic DNA by Agarose Gel 

Electrophoresis. 

-Preparation of DNA Plugs and Field Inversion Gel Electrophoresis. DNA fragmentation 

analysis was performed as previously described (22, Chapter Tbree). 

-Flow Cytometric Analysis of Apoptosis and p26Bcl-2 Levels. Flow cytometric evaluation 

for apoptotic cells and Bcl-2 levels was performed as described in Chapter Three. Additional 

flow cytometric data was obtained at the Winship Cancer Center, Emory University, Atlanta, 

GA, utilizing a Becton Dickinson F ACSort flow cytometer using L YSYS II software program 

(Version 2.0) for two-color (PI, red, and fluorescein, green) detection of fluorescent emissions 

(Becton Dickinson Immunocytometry Systems, San Jose, CA). 

-Assessmept of Cytotoxicity by the MIT Assay. The MIT assay for cell cytotoxicity was 

performed as previously described (325, 326, Chapter Tbree). 

-Western Blot Analysis of p26Bcl-2, p21Bax, and p29Bcl-xL Oncoprotejp Expressions. 

Western blot analyses for Bcl-2-related proteins in HL-60/neo and HL-60IBcl-2 clones after Ara­

C treatment were performed as described in Chapter Two. Horizontal scanning densitometry of 

protein bands was performed on Western blots by utilizing acquisition into Adobe PhotoShop 

and analyses with NIH Image Version 1.57 programs (Macintosh). 
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- Immunofluorescent Analysis of p26Bcl-2 Expression and Up-Regulation of p26Bcl-2 

Expression. Immunofluorescent analysis of Bcl-2 levels in HL-60/neo and HL-60IBcl-2 clones 

was performed as previously described (146, Chapter Two). After Ara-C treatment, non­

apoptotic cells were first identified by virtue of their morphologic features by paired-field 

fluorescence/phase-contrast microscopy on a Zeiss Axioplan microscope. Subsequently, mean 

p26Bcl-2 fluorescent intensity per non-apoptotic cell was measured as a function of the 

reciprocal of exposure time to the attached camera at film speed setting ASA 6400 set maximal 

sensitivity, on a Model MelOO automatic camera exposure system, using a 63x planapochromat 

objective lens (N.A. 1.4) on the fluorescent microscope. Levels of Bcl-2 intensity were 

expressed as percent of control. 

-Ribonuclease Protection Assay for bcl-2 and J3-actin mRNA Expression. Total RNA was 

prepared by using the RNeasy Total RNA Isolation Kit (QIAGen, Chatsworth, CAl. To 

construct human bcl-2 probes, the 850-bp EcoRI fragment of pB4, encoding the open reading 

frame of bcl-2a cDNA sequence (originally obtained from Drs. Emad S. Alnemri and Carlo S. 

Croce, 300) was digested with Sac!! to generate 302- and 620-bp bcl-2 cDNA fragments, which 

were subsequently cloned in to the SacI!IEcoRI sites of pBluescript SKII( +) (Stratagene, 

LaJolla, California) by Dr. Shuli Li, and were the kind gifts of Dr. Gian G. Re (Medical 

University of South Carolina, Charleston, SC). Recombinant plasmids were purified by 

ultracentrifugation over cesium chloride gradients (296). In order to transcribed antisense bcl-2 

RNA probes, T3 RNA polymerase was utilized for the bcl-2 302-bp cDNA segment in SKII(+) 

linearized with EcoRI, and T7 RNA polymerase was utilized for the bcl-2 620-bp cDNA 

segment in SKII( +) linearized with Sac!l Sp6 RNA polymerase was utilized to transcribed a 

125-bp antisense b-actin RNA probe from the linearized pTRI-f3-actin human plasmid (Ambion, 

Inc., Austin, Texas). In vitro transcription of antisense RNA probes was achieved by utilizing 

the MAXI script in vitro RNA transcription kit (Ambion, Austin, Texas), and by incubating 1 Jlg 

linearized DNA template, IX transcription buffer, 10 mM OTT, 500 mM ATP, 500 mM CTP, 

500 mM GTP, 20 mM CTP, 50 JlCi/ml [a_32P]UTP (specific activity 3000 Ci/mmol, ICN 

Radiochemicals, Costa Mesa, CAl, 12.5 U human placental RNase inhibitor, and IOU of 

designated RNA polymerase, for 1 hour in a 37°C water bath. After heat-inactivation of RNA 

polymerase, DNA templates were then degraded by the addition of 4 U RNase-free DNase I 

(Ambion, Inc., Austin, TX) and additional incubation at 37°C for 20 minutes. RNA probes were 
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mixed with an equal volume of 2X gel loading buffer (80% formam ide, 0.1 % xylene cyanol, 

0.1 % bromophenol blue, 2 mM EDTA, Ambion, Inc.) and heated at 95°C for 3 minutes just prior 

to loading on and electrophoresis in a 4% polyacrylamide/8 M urea gel. After electrophoresis, 

the gel was exposed briefly to X-ray film for localization of the gel-purified full-length RNA 

probes, which were subsequently excised from the gel and eluted by incubation in 350 J.!I elution 

buffer (Ambion, Inc., Austin, TX) at 34°C with gentle shaking overnight. 

The following day, elution supernatant was measured in a scintillation counter (Beckman, 

Columbia, MD) for radioactive 32p signal, and approximately 2-8 x 104 cpm of each probe was 

co-precipitated vvith 50 J.lg total RNi-\ samples by adding O.SNI sodium acetate (NaOAc) and 

1000/0 ethanol, and incubating at -20oe for 1 hour. Total RNA plus antisense RNA probes were 

pelleted by centrifugation, resuspended in 20 J-ll solution A (hybridization buffer: 80% deionized 

formam ide, 100 mM sodium citrate pH 6.4., 300 mM sodium acetate pH 6.4, 1 mM EDTA; 

Ribonuclease Assay Kit, Ambion, Inc.), and allowed to hybridize at 42°C overnight with gentle 

shaking. 

The following day, non-hybridized RNA sequences remaining single-stranded were digested 

by the addition of 0.5 U RNase A and 20 U RNase Tl (Ambion, Inc.) incubation at 37 C for 45 

minutes after vigorous mixing. RNases were inactivated by addition of equal volume of solution 

Dx (Ambion, Inc.), and RNA-RNA hybrids were precipitated for 1 hour at -20°C with 0.5 M 

NaOAc and 2.5 volumes of 1000/0 ethanol. RNA-RNA hybrids were pelleted by centrifugation, 

resuspended in 5 ml gel loading buffer (950/0 formam ide, 0.0250/0 xylene cyanol, 0.025% 

bromophenol blue, 0.5 mM EDT A, 0.025% SDS), heated at 95°C for 3 minutes, and 

electrophoresed on a 50/0 polyacrylamide/8M urea gel. The gel was dried at 85°C for 45 minutes 

in a BioRad Slab Gel Dryer apparatus (Brea, CAl and exposed to X-ray film at -80°C overnight. 

Horizontal scanning densitometry of bcl-2 and f3-actin bands was performed on the X-ray films 

by utilizing acquisition in Adobe Photoshop and analyses with NIH Image Version 1.57 

programs (Macintosh) . 

• Flow cytometric determination of DNA strand breaks in apoptotic cells by in situ TUNEL 

(termipal deoxynucleotidyl transferase-mediated dUTP nick-end labelling) assay. After 

first and second exposures of HL-60/neo or HL-60IBcl-2 cells to Ara-C, cells were fixed, and 

DNA was labelled by the addition of fluorescein dUTP at Ara-C-induced strand breaks by 

terminal deoxynucleotidyl transferase (TdT), utilizing the in situ Cell Death Detection Kit 
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(Boehringer Mannheim, Indianapolis, Indiana). This procedure was optimized from that 

originally described by Gorczyca and Darzynkiewicz (351). Briefly, following drug removal by 

centrifugation, 1 x 106 cells were \vashed in 3 mls PBS and resuspended in 70% ice-cold ethanol 

for storage at -20°C overnight. The next day, cells were washed 2 times in 10/0BSAlPBS at 4°C, 

adjusted to 1-2x 107 cells/ml and transferred to a flat-bottomed 96-well microtiter plate 

(100JlUwell) for further processing. After centrifugation and removal of 1 % BSNPBS, the cells 

were resuspended in 100 J.ll/well permeabilization solution (0.1 % Triton X-I00 in 0.1 % sodium 

citrate) and incubated 2 minutes on ice. The cells were washed twice with 1 % BSAlPBS and 

resuspended in 50 J,ll/\vell TUNEL reaction mixture (TdT enzyme plus labelling solution 

consisting of nucleotides plus fluoresceinated dUTP), and incubated for 60 minutes at 37°C in a 

humidified incubator in the dark. After washing with 1 % BSAlPBS, the cells were transferred to 

microcentrifuge tubes after resuspension in 5 j.lg/ml propidium iodide (Sigma) containing 0.1 % 

RNase A (Sigma). After incubation for 30 minutes at room temperature in the dark, flow 

cytometry was performed on a Becton Dickinson F ACSort flow cytometer using L YSYS II 

Software program version 2.0 for two-color (PI, red, and fluorescein, green) detection of 

fluorescent emissions. DNA strand breaks in apoptotic cells (sub-G 1 phase of the cell cycle) 

\\·ere measured as mean fluorescence intensity of biotin-dUTP labelling, and were analyzed also 

using LYSYS II software (Becton Dickinson, Immunocytometry Systems, San Jose, CA). 

-Statistical Analysis. Statistical analyses were performed as described in Chapter Three. For 

Part A, unpaired t-test was used to compare values obtained between cell lines. For Part B, 

paired t-test was used to compare values within cell lines (control versus 48-hour values). 
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Results: 

A. Disparate levels of overexpression of p26Bcl-2 govern the response to Ara-C-induced. 

apoptosis and cytotoxicity in human AML HL-60 cells. 

-Creation and Characterization of Hk60/neo and Hk60/Bcl-2 cells: HL-60 cells were 

stably infected with recombinant amphotrophic retroviruses carrying either the neomycin (G41S) 

resistance gene alone, or in combination with bcl-2 eDNA, as described in Chapter Two. 

Subclon ing of HL-60/Bcl-2 cells by lim iting di lutian yielded several monoclonal populations, 15 

of which were subsequently screened for homogeneity and level of Bcl-2 expression by 

immunofluorescence microscopy. By measuring the intensity of Bcl-2 staining as a reciprocal of 

the brightness level transduced to the camera attached, levels of Bc12 overexpression compared 

to HL-60/neo were calculated. Three clonal populations of HL-60IBcl-2 cells were chosen for 

their disparate levels of overexpression: HL-60/Bcl-2 clonal population F exhibited 

homogeneous Bcl-2 expression 2 times higher than HL-60/neo, and was designated as "low 

overexpression"; HL-60/Bcl-2 clonal population D exhibited homogeneous Bcl-2 expression 4 

times higher than HL-60/neo, and was designated as "intennediate overexpression"; and HL-

601Bcl-2 clonal population B exhibited homogeneous Bcl-2 expression 6.3 times higher than 

HL-60/neo, and was designated as "high overexpression". [Population B was used for studies 

presented in Chapters Three and Five of this dissertation.] As presented in Chapter Two, low 

endogenous levels of p21 Bax and p29Bcl-XL proteins were unchanged by p26Bcl-2 

overexpression in HL-60 cells. 

-Ara-C-induced apoptosis, associated DNA fragmentation, and inhibition of viability in 

HL-60/neo versus HL-60fBcl-2 clones: HL-60/neo and HL-60IBcl-2 clonal populations B, D, 

and F were treated with HIDAC (100 J.lM Ara-C for 4 hours), washed, and resuspended in fresh 

drug-free culture media to be monitored over time. Figure 19, panel A demonstrates that 

genomic DNA extracted from HL-60/neo cells immediately and 4 hours after HIDAC treatment 

(lanes 2 and 3, respectively) exhibits the characteristic pattern of internucleosomal DNA 

fragmentation in 1.00/0 agarose gel electrophoresis. By 24 and 48 hours after HIDAC treatment 

this fragmentation pattern is not as sharp and includes smearing indicative of necrosis. By 

contrast, Ara-C-induced internucleosomal DNA fragmentation is reduced in the lowest, and 
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blocked in the intermediate, and highest overexpressing HL-60IBcl-2 clonal populations (HL-

601Bcl-2 clone F, lanes 7 to 10; HL-60IBcl-2 clone D, lanes 12 to 15; HL-60IBcl-2 clone B, 

lanes 17-20, respectively). Similarly, Figure 19, panel B demonstrates that higher molecular 

weight DNA fragments ranging from approximately 5 to 300 kilobase in size were observed 

more intensely in HL-60/neo cells immediately after HIDAC, 4, 24, and 48 hours after HIDAC 

treatment (lanes 2 to 5, respectively), than in HL-60IBcl-2 clonal populations at the same time 

points when genomic DNA-agarose plugs were subjected to field inversion gel electrophoresis 

(HL-60IBcl-2 clone F, Lanes 7 to 10; HL-60IBcl-2 clone D, lanes 12 to 15; HL-60IBcl-2 clone 

8, lanes 17 to 20). It is important to note, ho\\ever, that beginning at 4 hours after HIDAC 

treatment and resuspension in drug-free media, genomic DNA extracted from the lowest 

overexpressing HL-60IBcl-2 clone F exhibited internucleosomal DNA fragmentation at low 

intensity. In addition, field-inversion gel electrophoresed DNA-agarose plugs from HL-60IBcl-2 

clone F at 4 hours after HIDAC-treatment also exhibited faintly detectable levels of higher 

molecular weight DNA fragmentation. Later~ in both HL-60IBcl-2 clones 0 and B, this 

fragmentation was slightly detectable at 24 and 48 hours after HIDAC treatment in several 

experiments. 

Table VIII, Part I shows the results of flow cytometric evaluation of apoptosis detected as 

the percentage of cells in the sub-G t phase of the cell cycle in propidium iodide-stained HL-

60/neo and HL-60IBcl-2 clonal populations, either untreated or at various time points after 

HIDAC treatment, with graphical representation of the data underneath the table. This table 

highlights that a significantly greater percentage of HL-60/neo cells are detected in the sub-Gt 

phase of the cell cycle immediately following HIDAC treatment, as illustrated in the propidium 

iodide histograms in (see arrow in Figure 20, pointing to increased percentage of sub-Gt phase 

cells in the HL-60/neo population), as well as 4, 24, and 48 hours after HIDAC treatment than 

any of the HL-60IBcl-2 clonal populations assessed immediately following HIDAC treatment. 

The percentages of apoptotic HL-60/neo cells increase and reach a plateau over time. While the 

percentages of apoptotic HL-60IBcl-2 cells in all three clonal populations increase over time, as 

well, these percentages are significantly lower than in HL-60/neo cells. However, this table 

demonstrates that as time progresses after HIDAC treatment, a greater percentage of apoptotic 

HL-60fBcl-2 cells are detected in lowest overexpressing clonal population F than in intermediate 

or highest overexpressing clonal populations D and B. 
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As demonstrated in Chapter Three, Bcl-2 levels are directly correlated to increased cell 

viability after Ara-C treatment, and in this Chapter are demonstrated to extend this correlation 

over time after Ara-C treatment. Figure 21, top graph, shows assessment of cell viability by the 

MTT assay at various time points after Ara-C treatment in HL-60/neo versus HL-60IBcl-2 clonal 

populations, as tabulated in Table IX, Part I. Overall, exposure to IDDAC produced 

significantly greater cytotoxicity in HL-60/neo versus HL-60IBcl-2 clonal populations for up to 

24 hours after HIDAC treatment. For up to 12 hours after HIDAC treatment, inhibition of 

viability \vas significantly less (p < 0.05) in lo\vest, intermediate. and highest overexpressing 

populations HL-60/Bcl-2 F, 0, and B, as compared to HL-60/neo, and despite disparate 

endogenous levels of p26Bcl-2, inhibition of viability in HIDAC-treated HL-60IBcl-2 F, D, and 

B were not found to be significantly different (p > 0.05) from each other during these time 

points. However, after 12 hours following HIDAC treatment, while inhibition of viability was 

consistently and significantly less in HIDAC-treated intermediate-overexpressing HL-60IBcl-2 

o and highest-overexpressing HL-60/Bcl-2 B clonal populations as compared to HL-60/neo 

cells, the inhibition of viability in the lowest overexpressing HL-60IBcl-2 F clonal population 

increased to levels which were not significantly different (p > 0.05) from that demonstrated in 

HL-60/neo cells up to 48 hours following HIDAC. Therefore, at 24 and 48 hours after HIDAC 

treatment, the highest and intermediate overexpressing HL-60/Bcl-2 clonal popUlations D and B 

exhibit significantly less inhibition of viability by the MIT assay than lowest overexpressing 

HL-60IBcl-2 clonal population F or HL-60/neo cells. These results are consistent with 

assessment of cell viability by trypan blue exclusion, a late manifestation of cytotoxicity 

characterized by loss of membrane penneability. Figure 21, bottom panel demonstrates that up 

to 24 hours after HIDAC treatment, all HL-60IBcl-2 clonal populations show significantly less 

inhibition of viability by Ara-C treatment by virtue of higher percentages of viable cells, which 

are stiIJ able to exclude trypan blue from their membranes. This data in Figure 21 is tabulated in 

Table IX, Part II. At 48 hours, the membrane integrity assayed for by trypan blue dye 

exclusion is maintained significantly only in the highest overexpression HL-60IBcl-2 clonal 

population B. As compared to the data obtained by the MIT assay, this discrepancy reflects the 

different endpoints tested for by the two assays. 
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Lbcl-2 expression is induced in human AML Hk60 cells which survive treatment with 

high-dose Ara-C . 

• Western blot analyses for p26Bcl-2 and p21Bax expressions in HL-60/neo versus HL-

601Bcl-2 clonal populations. Figure 22 displays Western blot analyses showing disparate 

endogenous levels of p26Bcl-2 expression in HL-60/neo (lane 1), lowest overexpressing HL-

601Bcl-2 clonal population F (lane 6), intermediate overexpressing HL-60IBcl-2 clonal 

population D (lane 11), and highest overexpressing HL-60IBcl-2 clonal population B (lane 16). 

In addition~ these \\~ estern blots demonstrate that endogenous levels of Bcl-2 homolog p21 Bax 

are similar in all four cell populations studied (same lanes). Immediately following HIDAC 

treatment, as well as 4, 24, and 48 hours following HIDAC treatment, total protein was extracted 

from all 4 cell lines for immunoblot analyses. 10 Jlg total protein was assessed for p26Bcl-2 

levels and 50 J.lg assessed for p21 Bax levels. When scanning densitometry was performed, 

levels obtained for p26Bcl-2 expression were multiplied by 5 to equalize with p21 Bax amount 

and divided by the intensity level for p21 Sax in order to obtain a ratio for p26Bcl-2:p21Bax 

expression. Table X shows results of calculations of p26Bcl-2:p21 Bax ratios in HL-60/neo cells 

as compared to HL-60IBcl-2 clonal populations F, D, and B for up to 48 hours following HIDAC 

treatment. While p21 Bax levels remained the same in all populations studied, despite disparate 

endogenous levels of p26Bcl-2, p26Bcl-2:p21 Bax ratios increased from control to 48 hours after 

HIDAC treatment in all four cell lines studied (corresponding to lanes 2 to 5 for HL-60/neo; 

lanes 7 to 10 for lowest overexpressing HL-60IBcl-2 clonal population F; lanes 12 to 15 for 

intermediate overexpressing HL-60IBcl-2 clonal population D; lanes 17 to 20 for highest 

overexpressing HL-60IBcl-2 clonal popUlation 8, respectively, in Figure 22, with graphical 

representations in Figure 22a). Statistical analyses including paired t-test showed that these 

increases were significant in HL-60/neo cells (p < 0.05), in HL-60IBcl-2 clonal populations F 

and 0 (p < 0.01), but not statistically significant in I-IL-60IBcl-2 clonal popUlation B, whose 

intensity of p26Bcl-2 expression by Western blot is already extremely high . 

• Flow cytometric and immunofluorescent analyses for increases in p26Bcl-2 expression in 

HIDAe-treated HL-60/neo and HL-60/Bcl-2 clonal populations: Because scanning 

densitometry results are susceptible to variable subjectivity in determining the area and density 

of protein bands, and because the high intensity of signals may saturate the imaging films to 
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inaccuracy, two additional methods were employed to confirm the increases in Bcl-2 expression 

detected in all four cell populations studied after Ara-C treatment. Immunofluorescent staining 

and fluorescent microscopy was used also to detect increases in Bcl-2 intensity over time after 

HIDAC treatment in HL-60/neo and HL-60/Bcl-2 F, D, and B cells. As described in the methods 

section, after immunostaining fixed and permeabilized cells from various conditions, non­

apoptotic cells surviving immediately after, 24, or 48 hours after HIDAC treatment were 

identified first by paired-field phase contrast microscopy, and Bcl-2 intensity level subsequently 

assessed as a function of the brightness sent to the attached camera when the fluorescence 

\\av'elength \vas activated. Figure 23 is a graphical representation of the data presented in Table 

XI, which demonstrates that compared to untreated control cells, and despite disparate 

endogenous Bcl-2 levels in control cells, HL-60/neo as well as lowest, intermediate, and highest 

overexpressing HL-60IBcl-2 F, D, and B clonal populations, respectively, exhibit statistically 

significant (p < 0.05) increases in Bcl-2 intensity in surviving, non-apoptotic cells up to 48 hours 

following HIDAC treatment. Taken together, these data represent confirmed increases in Bcl-2 

protein levels in HL-60 cells which survive after Ara-C treatment despite disparate endogenous 

levels in parental versus transfected clonal populations. Increase in p26Bcl-2 levels over time in 

all cell lines presented was confirmed by flow cytometry. Table XII shows results of 

assessment of Bcl-2 levels by flow cytometry utilizing double staining by anti-Bcl-2 antibody 

and propidium iodide staining for DNA content in HL-60/neo cells and HL-60IBcl-2 F, D, and B 

clonal populations with graphical representation underneath. Mean fluorescent p26Bcl-2 levels 

were tabulated in non-apoptotic (G b S, and G2 phase) cells by Elite multicycle software. At 

various time points over 48 hours after HIDAC treatment, non-apoptotic HL-60/neo cells as 

well as non-apoptotic HL-60/Bcl-2 F, 0, and B clonal populations demonstrate statistically 

significant increases (p<O.05) in Bcl-2 expression as compared with untreated HL-60/neo, HL-

601Bcl-2 F, D, and B cells. 

• Ribonuclease protection assay for induction of hcl-2 mRNA expression in HL-60/neo 

versus Hk601Bcl-2 clonal populations after HIDAC treatment. and flow cytometric 

determination of effect of RNA synthesis and protein synthesis inhibitors on increased 

p26Bcl-2 leyels: To address the question whether the mechanism by which the above 

demonstrated increase in Bcl-2 levels among surviving cells is due to selection of populations of 

cells which overexpress Bcl-2 or due to up-regulation of bcl-2 mRNA expression, ribonuclease 
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protection assay for bcl-2 mRNA expression relative to J3-actin mRNA expression was 

performed on 50 Jlg total RNA extracted from 100 x 106 HL-60/neo or HL-60IBcl-2 B cells at 

various time points after HIDAC treatment. After double hybridization with human bcl-2 and P­
actin antisense RNA probes, bcl-2 expression relative to J3-actin expression levels \vere 

compared, utilizing horizontal scanning densitometry, and expressed as percent of control. 

Figure 24 shows bcl-2 mRNA expressions in HL-60/neo cells as compared to HL-60IBcl-2 B 

cells at various time intervals following HIDAC treatment. Panel A shows that while bcl-2 

mRNA is barely detectable in HL-60/neo cells at this exposure and hybridization level, higher 

bcl-2 mRNA levels in HL-60/8cl-2 cells increased further to statistically significant values over 

control values beginning at 2 hours of Ara-C treatment and continuing up to 24 hours after Ara-C 

treatment (lanes 8-12 in HL-60IBcl-2 versus lanes 2-6 in HL-60/neo cells). Panel B shows 

graphical representation of these values, shown in Table XIII, expressed as percentage of 

induction over bcl-2:f3-actin ratio in control cells. (The left graph shows that induction of bcl-2 

mRNA was not detected in HL-60/neo cells, but indeed detected in HL-60IBcl-2 cells on the 

right graph. Larger views of the graphs are provided in Figure 24a). To further determine 

whether these increases in bcl-2 levels were due to increased RNA synthesis, the effect of 

concomitant exposure to 5 J.1g/ml RNA synthesis inhibitor actinomycin D (as used previously in 

refs. 255, 352) was detennined, both during Ara-C exposure, and then replaced when Ara-C \vas 

washed from the cells at the end of the 4-hour exposure. Panel C of Figure 24 shows that in 

HL-60IBcl-2 cells, increases in bcl-2 mRNA levels after 2 and 4 hours of 100 J.lM Ara-C 

treatment (lanes 2 and 3) as well as 4, 8, and 24 hours after Ara-C treatment (lanes 4, 5, and 6, 

respectively), were abrogated by concomitant actinomycin D exposure. The graph in Panel D 

(with larger view in Figure 24a) depicts that Actinomycin 0 treatment causes the bcl-2: f3-actin 

levels to return to approximately that of control values, as listed in Table XIII (for example, 

121.0 I % of control ± 8.39 at 4 hours of Ara-C treatment versus 97.96% of control ± 4.46 at 4 

hours of Ara-C plus concomitant actinomycin D treatment), and suggests that new bcl-2 mRl"'1A 

synthesis is induced by Ara-C treatment in surviving cells of various populations. In addition, 

both concomitant treatments with actinomycin D as well as 10 J.1g/ml cycloheximide (255) 

similarly abrogated Ara-C-mediated increases in p26Bcl-2 expression in all cell lines as detected 

by flow cytometry. Table XIV shows that, statistically significant increases in p26Bcl-2 levels 

up to 48 hours after Ara-C treatment (similar to the results in Table XII) are also abrogated by 

continuous exposure to 5 J..1g/ml actinomycin 0 or 10 Jlglml cycloheximide, which inhibit de 
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novo bcl-2 induction. Each inhibitor returns p26Bcl-2 levels to approximateiy equivalent to 

control levels in each cell line studied, as illustrated in the graphs in Figure 25. These data 

indicate that induction of bcl-2 occurs at the RNA level after exposure to Ara-C, irrespective of 

endogenous level of p26Bcl-2. 

-Effect of second HIDAC treatment of surviving HL-60/neo or Hk60/Bcl-2 OD cell viability 

assessed by MTT assay, as indication of biological significance of increased Bcl-2 

expression. The above results demonstrate a statistically significant increase in Bcl-2 

expression in HL-60/neo, HL-60/Bcl-2 F~ D. or B cells surviving after HIDAC treatment, despite 

disparate endogenous p26Bcl-2 levels. To address the question whether this statistically 

significant difference in Bcl-2 expression over time is indeed biologically significant, HL-60/neo 

cells, which most readily show evidence of HIDAC-induced apoptosis, were pre-treated with 

HIDAC, washed 5 to 6 times with sterile PBS, and resuspended in fresh drug-free media. During 

three days' growth in drug-free media, the surviving cells in both populations were separated 

from dead or apoptotic cells and debris by daily centrifugation over Histopaque density gradient, 

and v.ere re-exposed to various concentrations of Ara-C. After 4 hours of second treatment with 

different doses of Ara-C, cells were washed, resuspended in fresh, drug-free media for 20 hours 

and subsequently assessed for cell viability by the tetrazolium dye MTT assay. Figure 26 shows 

results of assessment of viability after first and second Ara-C treatment of HL-60/neo cells. The 

top panel is an image of a 96-well plate showing the end result of a representative MIT assay in 

which HL-60/neo cells which have survived initial HIDAC treatment show higher viability by 

virtue of darker intensity of soluble mitochondrial enzymes precipitated in MTT and dissolved in 

DMSO/ethanoi (as described in Materials and Methods) than original HL-60/neo cells exposed 

to the same concentrations of Ara-C. The following Table XV and Figure 27a, top graph, 

show that for various concentrations, Ara-C was less capable of inhibiting cell viability in pre­

treated HL-60/neo cells as compared to previously untreated HL-60/neo cells. In addition, 

further evidence for increase in viability in surviving pre-treated HL-60/neo cells was also found 

by decreased percentages of apoptotic cells and total DNA breaks as detected by fluorescein­

conjugated dUTP labelling (TUNEL assay), propidium iodide staining for DNA content, and 

subsequent flow cytometry. Figure 27 is merged with Table XVI, and depicts propidium iodide 

histograms for the induction of apoptosis in previously untreated HL-60/neo cells exposed to 

increasing concentrations of Ara-C (100 nM to 100 JlM for 4 hours), and compares the height of 
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the sub-G t (apoptotic) peak with that seen in pre-treated HL-60/neo cells exposed to the same 

concentrations of Ara-C. Table XVI underneath each histogram shows that the percentage of 

apoptotic cells detected either flo\\l cytometrically or visually for morphologic evidence of 

apoptosis in pre-treated HL-60/neo cells are significantly less for 1 and 10 IJ.M Ara-C than for 

previously untreated HL-60/neo cells (presented in Figure 27a, bottom graph), as are total 

DNA breaks labelled by TUNEL assay and detected flow cytometrically. 

These results correlate increased Bcl-2 levels over time after HIDAC treatment with 

increased survival advantage upon re-exposure to Ara-C, especially at low dosages, by virtue of 

increased viability and significantly less manifestation of Ara-C-induced apoptosis. 

Discussion: 

Immediately following treatment with HIDAC (100 J.lM Ara-C for 4 hours), it can be 

consistently demonstrated that high levels of p26Bcl-2 overexpression block the late 

manifestations of Ara-C-induced apoptosis, including Ara-C-induced intemucleosomal DNA 

fragmentation, high molecular weight DNA fragmentation, and the morphologic features of 

apoptosis, and decreases Ara-C-induced inhibition of cell viability in HL-60 AML cells. The 

studies presented in Chapter Two demonstrated that although p26Bcl .. 2 blocks Ara-C-induced 

double-strand DNA damage, early steps in Ara-C metabolism, including the generation of early 

DNA damage manifested as strand breaks, are not affected by p26Bcl-2 overexpression. The 

studies presented in this chapter address the question as to what extent disparate levels of 

p26Bcl-2 overexpression in HL-60 cells affect the fate of residual Ara-C-indueed DNA damage 

over time after Ara-C is removed from the culture media and cells either survive or engage the 

apoptotic pathway. As an explanation for cell survival, an additional question addressed in this 

chapter is whether Bcl-2 levels themselves are modulated 

To attempt to answer these questions, HL-60/neo and HL-60IBcl-2 cells generated for 

the studies in Chapters Two and Three were further characterized by virtue of the disparate 

levels of p26Bcl-2 overexpression in HL-60 parental cells transfected with retroviral constructs 

containing bcl-2 eDNA. The original total population of HL-60 cells stably infected with bcl-2-
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containing retroviruses was heterogeneous for its overexpression of p26Bcl-2, with individual 

cells exhibiting disparate levels of Bcl-2 overexpression, as assessed by immunofluorescent 

staining (data not shown), Because stable transfection results in random integration of the cDNA 

of interest into the genome (307-309), it is possible that bcl-2-containing retroviruses which 

infected HL-60 cells integrated at various sites which differed in their contributions toward 

favorable environments for bcl-2 expression to high levels. Subcloning of HL-60IBcl-2 cells by 

limiting dilution produced several clonal populations, which, since generated from an original 

population heterogeneous for Bcl-2 expression, exhibited homogeneous overexpression of Bcl-2 

to different levels, but consistently low endogenous expression of p21 Bax and p29Bcl-xL by 

Western blot. Specifically, HL-60IBcl-2 clonal populations F, D, and B were chosen, with 

levels of Bcl-2 overexpression approximately 2, 4, and 6.3 times higher than in HL-60/neo cells 

as determined by levels of intensity of Bcl-2 staining detected by a fluorescence microscope and 

photography apparatus described in the Methods section. Since HL-60IBcl-2 clonal population 

B exhibited the highest level of overexpression, these cells were used for the studies in Chapters 

Two and Three. The studies presented in this chapter utilize clonal population B, as well as the 

intermediate overexpressing population D and the lowest overexpressing population F in order to 

identify a potential threshold level for p26Bcl-2-mediated blockade of Ara-C-induced apoptosis 

and protection of HL-60 cells after HIDAC treatment. 

A, Disparate levels of overexpression of p26Bcl-2 govern the response to Ara-C-induced 

apoptosis and cytotoxicity in human AML HL-60 cells. 

Analysis of genomic DNA for internucleosomal DNA fragmentation and DNA-agarose 

plugs for high molecular weight DNA fragmentation demonstrated that high and intermediate 

levels of overexpression of p26Bcl-2 protected HL-60 cells from HIDAC-induced double­

stranded DNA fragmentation for up to 24 hours following Ara-C treatment. Only in HL-60IBcl-

2 clone F, with the lowest levels of overexpression (2 times greater than that exhibited by HL-

60/neo cells), was double-strand DNA of both large size and low molecular weight size detected 

beginning at 4 hours after Ara-C treatment. Similarly, as detected by flow cytometry, Ara-C is 

prevented from inducing apoptotic fractions in the lowest, intermediate, and highest 

overexpressing fractions of HL-60IBcl-2 cells for several hours. However. the lower the level of 

p26BcI-2 overexpression, however, the more apoptotic cells are increasingly detected after 
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HIDAC treatment, illustrating a dose-response of Bcl-2 level to amounts of apoptosis 

inhibited. 

In addition, as evident by the result from the MTT assay, which is specific for viable 

mitochondrial enzymes still functional after drug treatment, HL-60IBcl-2 with highest levels of 

Bcl-2 overexpression (clonal populations D and B) exhibit significantly less inhibition of cell 

viability up to 48 hours after Ara-C treatment, while cells with lowest (two times higher) 

overexpression of Bcl-2 lose the ability to block inhibition of cell viability, similar to HL-60/neo 

cells, by 24 hours after Ara-C treatment. Trypan blue dye exclusion studies in these various 

clones also demonstrate that higher levels of Bcl-2 overexpression protect against loss of cell 

viability due to Ara-C, better than cells which have lower expression of Bcl-2. The different 

features of cell viability measured by the two assays may reflect the disparity in timing of 

protection against the loss of viability in HL-60IBcl-2 clone F. The data presented may indicate 

that loss of membrane permeability occurs later than inhibition of mitochondrial enzymes, 

thereby explaining differences in viability levels in lower overexpressing HL-60IBcl ... 2 F cells by 

the two methods. 

Taken together, these data indicate that progressively greater levels of Bcl-2 confer 

HL-60 cells with a progressively greater survival advantage following treatment with Ara­

C. Bcl-2 expression and the degree of protection it confers may be subject to interpretation 

based on the individual assays used to evaluate specific features of viability. When used, they 

demonstrate that even a two-fold level of overexpression of Bcl-2 does confer a distinct 

survival advantage. 

While these data demonstrate that Bcl-2 can dampen the manifestations of apoptosis, an 

explanation is therefore required, however, as to the delayed induction of this double-strand 

DNA fragmentation. Tang et af. demonstrated that despite initial blockade of taxol-induced 

apoptosis by p26Bcl-2 overexpression, 6971Bcl-2 cells still exhibited taxol-induced microtubular 

bundling, and when monitored over time after taxol treatment, a small percentage of cells 

eventually escaped this blockade and exhibited intemucleosomal DNA fragmentation associated 

with apoptosis (10 I). Here, an alternative pathway for taxol-induced cell death was suggested as 

an explanation for the eventual induction of apoptosis in a percentage of 6971Bcl-2 over time. 
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Manome et al. found that when U937 myeloid leukemia cells transfected with bcl-2 were 

exposed to various doses of Ara-C (1 nM to 10 mM for 3 hours) and monitored for up to 24 

hours after treatment, that protection from apoptosis by p26Bcl-2 was an operative mechanism 

only at low doses of Ara-C (353). They argue that because there was no associated increase in 

DNA fragmentation in bcl-2-transfectants with disparate levels of Bcl-2 given a fixed dose of 

Ara-C, and that because higher doses of Ara-C caused more cell death in U9371Bcl-2 cells than 

low doses of Ara-C, that apoptosis is probably a less relevant mechanism for Ara-C-induced 

cytotoxicity at higher doses than is diffuse DNA degradation associated with Ara-C-induced 

DNA strand breaks (353). This also suggests an alternative mechanism induced by Ara-C­

mediated DNA damage in AML cells independent of the target(s) of Bcl-2-mediated blockade of 

cell death, with higher doses of Ara-C inducing more cytotoxicity beyond the scope of frank 

apoptosis. In addition, Yin and Schimke have recently reported that Bcl-2 overexpression in 

HeLa S3 cells delays aphidicolin- or colcemid-induced apoptosis and DNA fragmentation for up 

to 36 hours of treatment, yet does not increase clonogenic survival in drug-treated transfected 

cells (354). However, they report that Bcl-2 did increase clonogenic survival in HeLa S3 cells 

exposed to short treatment with a different apoptotic stimulus~ trimetrexate (354). They suggest 

that aphidicolin treatment itself induced commitment to apoptosis upstream of Bcl-2-mediated 

blockade in these cells distinct from that of trimetrexate (354), and therefore also illustrate that 

Bcl-2-independent and Bcl-2-dependent pathways of apoptosis exist. Cuende et al. further 

support this suggestion by demonstrating that Bcl-2 overexpression in B lymphoma cells 

selectively protects against cell death due to withdrawal of only specific growth factors (355). 

Therefore, alternate apoptotic signals independent of the initial Bcl-2-mediated blockade 

may account for the inevitable induction of apoptosis in a small percentage of cells 

irrespective of endogenous Bcl-2 levels. 

As mentioned in the introduction of Chapter One and the discussion of Chapter Three, 

Ara-C may also induce an additional pathway not affected by Bcl-2, including the modulation of 

protein kinases and/or transcription factors, and the stimulation of signal transduction pathways 

which affect targets distinct from genomic DNA. This concept may account for the delayed but 

eventual induction of apoptosis seen here even in cells overexpressing Bcl-2, by a pathway(s) 

which is independent of, and may override, Bcl-2 activity in a small percentage of cells. 

Conversely, this eventual induction of apoptosis in a small percentage of cells may be due to an 
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inherent or acquired heterogeneity of Bcl-2 expression In the populations studied, and is 

examined. Another question to be addressed is the mechanism by which the surviving cells 

maintain their blockade of the induction of the apoptotic pathway, despite the demonstration of 

equivalent extents Ara-C-induced early DNA damage in the studies presented in Chapter Three, 

and despite evidence for eventual engagement of the apoptotic pathway in a small percentage of 

cells presented in this chapter. 

Part H, bcl-2 expression is induced in human AML HL-60 cells which survive treatment 

with high-dose Ara-C. 

When Tang et al. reported delayed onset of taxol-induced apoptosis in 6971Bcl-2 cells 

instead of complete blockade up to 4 days after taxol treatment, they demonstrated that this 

eventual demise in a percentage of the cell population, although less than in identically treated 

697/neo cells, was not accompanied by decreases in p26Bcl-2 levels by Western blot analysis 

(104). Similarly, Tang et al. demonstrated that while combined treatment of HL-60 parental 

cells \-\lith GNI-CSF/IL-3 fusion protein pIXY321 plus Ara-C enhanced apoptosis, this increase in 

cytotoxicity was not accompanied by decrease in p26Bcl-2 levels (356). The studies presented 

in this Chapter Four also examine p26Bcl-2 levels themselves as monitored over time after Ara­

C treatment in HL-60/neo versus HL-60/Bcl-2 clonal populations, first in the total population by 

Western blot, and then specifically in non-apoptotic surviving cells distinguished by 

immunofluorescent microscopy and flow cytometry, as a potential explanation for the ability of 

surviving cells to avoid the induction of HIDAC-induced apoptosis. The Western blots in 

Figure 22 display moderate increases p26Bcl-2 levels in HL-60/neo as well as HL-60IBcl-2 

clonal populations up to 48 hours after Ara-C treatment. Furthennore, p21 Bax levels did not 

change by Western blot analysis, even as percentages of cells undergoing apoptosis, increased to 

various degrees in all cell lines examined, as detected by propidium iodide staining and flow 

cytometry. In the Western blots presented here, p21 Bax levels represent total Bax levels, and 

were the only form of Bax detected in these cell lines with this method of protein extraction. 

Here, total Bax levels were not distinguished as being unbound or bound as homodimers or 

heterodimers with Bcl-2 or other Bcl-2 family members. Other newly described Bcl-2-related 

proteins which complex with BcI-2 in various interactions, including bad, bag-I, and bak were 

also not yet examined (175-179). The increases in Bcl-2 levels over time after Ara-C treatment, 

however, were indeed confirmed by immunofluorescence and flow cytometry in HL-60/neo as 
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well as HL-60IBcl-2 clonal populations. Furthennore, these confirmatory techniques allowed 

the distinction between apoptotic and non-apoptotic cells, and demonstrated that Bcl-2 levels 

indeed increased in surviving intact cells of all 4 cell lines up to 170.80% ± 26.89 of control (or 

1.7-fold increase) up to 48 hours after Ara-C treatment (as seen in HL-60/Bcl-2 clone F in Table 

XII). This is consistent with the recent findings by Andreeff et al. in leukemic CD34+ cells 

derived from patients who failed to achieve complete remission after 3 to 4 days of receiving 

induction chemotherapy, in which Bcl-2 levels increased by 185%, as detected by flow 

cytometry (357). Whether Ara-C treatment, Ara-C-induced transcription factors or protein 

kinases, or the apoptotic process may alter Bcl-2 conformation such that the epitope recognized 

by the anti-Bcl-2 antibody used is actually made more accessible, yielding a higher fluorescence 

at the protein level, is one cautioned possibility worthy of further confirmation (146). However, 

by Western blot, no other higher molecular weight species of Bcl-2 were observed after Ara-C 

treatment in any of the cell populations tested, as seen by Willingham in taxol-treated KB cells 

(146), or by Haldar et al. in taxol-treated prostatic carcinoma cells, indicative of phosphorylation 

of Bcl-2 (85). Only smaller bands are slightly detectable, which have also been previously noted 

using this antibody, and suggested to represent either breakdown products of Bcl-2 or products 

of alternatively spliced transcripts of bcl-2 (94). 

These data which show increased Bcl-2 at the protein level after Ara-C treatment only 

partially support the Bcl-2:Bax "rheostat" theory proposed by Oltvai and Korsmeyer, which 

hypothesizes that the levels of opposing proteins Bcl-2 and Bax govern the fate of cells exposed 

to apoptotic stimuli (161, 166). Oltvai and Korsmeyer predict that cells which possess higher 

Bcl-2 levels are protected from apoptosis, while cells which possess higher Bax levels are more 

susceptible to apoptosis (161, 166). Chresta et al. demonstrate that human testicular tumors 

with high Bax:Bcl-2 ratios are more susceptible to drug-induced apoptosis (358). In addition, 

Thomas et al. also demonstrate by Western blot analysis that B-cell chronic lymphocytic 

leukemia (B-CLL) cells with low Bcl-2:Bax ratios were sensitive to apoptosis induced by a 

camptothecin analogue, while cells with intennediate to high Bcl-2:Bax ratios were drug 

resistant (359). In addition, they showed the up-regulation of various Bax complexes in drug 

sensitive 8-CLL cells undergoing apoptosis (359). The data presented in this chapter 

demonstrate indeed that HL-60 cells which possess high levels of p26Bcl-2 are protected from 

the induction of Ara-C-induced apoptosis. However, the consistently low levels of p21 Bax 
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detected by Western blot in both HL-60/neo and HL-60IBcl-2 cells do not illustrate any 

modulation in total p21 Bax levels by this method, despite disparate apoptotic outcomes in these 

various cell lines after HIDAC treatment. If these data \vere to be consistent with Oltvai and 

Korsmeyer's model, it would be predicted that as HL-60 cells with disparate levels of 

overexpression of p26Bcl-2 undergo apoptosis, either immediately in a large percentage of HL-

60/neo cells, or eventually in a small percentage of HL-60IBcl-2 cells, the levels of p21Bax 

might rise and contribute to an explanation for their variable susceptibilities to drug-induced 

apoptosis. Further detailed studies examining absolute free Bax levels in apoptotic cells are 

presently undenvay in our laboratory. In add ition. as mentioned in the introduction of this thesis, 

Miyashita et al. have recently demonstrated that the wild-type tumor suppressor p53 can regulate 

bcl-2 and bax expressions (62) in vitro and in vivo, and may utilize the modulations of these 

genes as a mechanism of its ability to stimulate apoptosis. wt-p53 down-regulates bcl-2 

expression by virtue of its binding to a p53-dependent negative response element downstream of 
i 

the major promoter utilized in the transcription of the bcl-2 gene (62, 75). Conversely, the bax 

gene contains a consensus sequence for p53 binding, and is up-regulated by wt-p53 (63). HL-60 

cells, ho\vever, have deletions of p53 (285). The data presented here illustrate that p53 

expression is not necessarily required for the induction of apoptosis by Ara-C in HL-60 cells, or 

for the modulation of bcl-2 expression. 

1. Induction of hcl-2 versus selection for Bcl-2. 

Whether increases in total Bcl-2 levels were also due to selection of populations of cells 

with higher Bcl-2 levels, or due to induction of bcl-2, was considered. In order to address the 

question whether the demonstrated increases in bcl-2 levels take place at the transcriptional 

level, the ribonuclease protection assay (RPA) was then used. Previously, Bhalla et al. reported 

that in HL-60 cells subjected to a prolonged exposure to 100 J.lM Ara-C (for 24 hours), bcl-2 

mRNA levels decreased as increasing percentages of cells underwent apoptosis, as demonstrated 

by Northern blot (360). However, this level of bcl-2 mRNA was not quantitated relative to f3-

actin mRNA expression, and represents expression in the total cell population. The bcl-2 RNA 

analysis presented in this chapter is the result of the more sensitive RP A, and the signals were 

quantitated using scanning densitometry. Furthermore, these results are obtained from total 

RNA from intact non-apoptotic HL-60/neo or HL-60IBcl-2 cells separated from apoptotic cells 

after HIDAC treatment by Histopaque density gradient centrifugation. The studies presented 
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here in this chapter demonstrate the induction of bcl-2 mRNA as detected by RP A most 

appreciably in Bcl-2-overexpressing cells exposed to and recovering from HIDAC treatment. 

Increases in steady-state bcl-2 mRNA levels above that in untreated HL-60IBcl-2 cells \vere 

abrogated by concomitant exposure to RNA synthesis inhibitor actinomycin D as previously 

used (255, 352), further indicating that this induction occurs at the level of transcription. While 

bcl-2 mRNA levels in HL-60 parental and HL-60/neo cells are low, moderate levels of Bcl-2 

protein are still detectable (Figures 14, 16, 22). This has been also noted by Delia et al. and 

attributed to the long half-life of the Bcl-2 protein (200). Thus a modest increase in bcl-2 

expression at the mRNA level (only approximately 120o,,~ of control in HL-60i/Bcl-2 B clones~ or 

1.2-fold increase) ITIay lead to a significant up-regulation of Bcl-2 at the protein level. When the 

final Bcl-2 protein product was re-examined by flow cytometry, concomitant actinomycin D, as 

well as protein synthesis inhibitor cycloheximide also abrogated de novo increases in Bcl-2 

levels after Ara-C treatment. Similar results have been noted by Perreault and Lemieux when de 

novo expression of c-myc \vas inhibited to the same extent by either inhibition of transcription 

\vith Actinomycin D or inhibition of protein synthesis by cycloheximide, and links 

cycloheximide to the inhibition of gene expression in general (361). These similar results 

obtained in this Chapter with both types of synthesis inhibitors further suggest that the induction 

of bcl-2 occurs at the transcriptional level because they interfere (at different steps) with the 

ultimate translation of bcl-2 message into higher levels of Bcl-2 protein. 

Selection is also a possible explanation for the mechanisnl for increased Bcl-2 levels 

detected by the above presented experiments. The proportion of cells in any population which 

succumbs to apoptosis may be that proportion with lower levels of Bcl-2, while those that 

survive may represent a new popUlation of cells with higher Bcl-2, and which withstand a 

selective pressure. Andreef et al. suggest selection as the means of up-regulation of Bcl-2 levels 

in patient-derived CD34+ cells which survive after chemotherapy treatment because induction of 

bcl-2 by peR was not detected (356). In this Chapter, histopaque centrifugation to study RNA 

induction in only non-apoptotic cells may represent an artificial selection process in a population 

harvested for extraction. In this dissertation, however, the actual movement toward selection of 

cells with higher Bcl-2 levels from the total population of cells after Ara-C treatment does not 

seem as likely in the originally homogeneous clonal populations of HL-60/Bcl-2 cells presented 

here, as in HL-60/neo cells, which were not subcloned by limiting dilution and exhibit slight 
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heterogeneity of endogenous Bcl-2 intensity (seen previously by immunofluorescence in Figure 

15, Chapter Two). Although selection from a population of cells which contain slightly higher 

levels of Bcl-2 may still be a possibility for all cell lines studied, it is not supported by the 

homogeneous overexpression of Bcl-2 maintained in the HL-60IBcl-2 clones both at 10 and 19 

months after original isolation, as visualized by immunofluorescence microscopy. The modest 

induction of hcl-2 is concluded to at least contribute to the up-regulation of Bcl-2 detected 

in cells which survive Ara-C treatment. While induction of bcl-2 mRNA was not detectable in 

HL-60/neo cells by the optimizations used in the RP As presented here, higher Bcl-2 protein 

levels after Ara-C treatment were still detected in HL-60/neo cells as well, and abrogated by 

concomitant exposure to actinomycin 0 or cycloheximide, indicating that induction of bcl-2 can 

occur in HL-60/neo cells as well. 

How Ara-C treatment affects Bcl-2 levels is an important issue to address in understanding 

the mechanism for this up-regulation. Further in-depth studies to elucidate the molecular 

mechanism of regulation of bcl-2 RNA transcription would include nuclear run-on assay to 

deterrnine whether the mechanism of increased bcl-2 RNA levels is due to increased rates of 

transcription or to increased stability of the bcl-2 mRNA transcripts themselves. At the RNA 

level, further studies would be to examine the effect of Ara-C-induced transcription factors or 

protein kinases on the bcl-2 promoter region by CAT (chloramphenicol acetyltransferase) assays. 

Also, because the bcl-2 gene sequence contains two AP-l binding sites downstream of its ORF, 

for example, another possibility to be examined is the regulation of bcl-2 expression in trans by 

Ara-C-induced alternate targets. The existence of a positive feedback loop to up-regulate bcl-2 

expression \\"hen cells are exposed to an apoptotic signal may be yet another possibility. 

However, specific positive response elements in the bcl-2 promoter sequence have yet to be 

identified. Whether the induction of bcl-2 levels occurs after treatment of AML cells with drugs 

other than Ara-C is yet another important further study, and would give an important indication 

toward the mechanisms by which leukemic cells may launch a survival response after exposure 

to apoptotic stimuli. 

The results presented in this part of Chapter Four are consistent with previous studies in 

the literature which have demonstrated up-regulation of drug resistance genes after drug 

treatment in various cell systems. mdr-l mRNA expression was induced after drug treatment in 
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mdr+ cell line CEMI A 7R, as reported by Hu et a/. (345), in mouse hepatoma cells after 

dexamethasone treatment, as reported by Zhao et a/. (350), and by quantitative RT-PCR in K562 

cells after treatment with various chemotherapeutic agents by Chaudhary and Roninson (349). 

Among the few instances in the literature of up-regulation of members of the Bcl-2-related 

protein family is a report by Schwarze and Hawley in which Interleukin-6 (IL-6)-mediated 

suppression of apoptosis in B9 myeloma cells was associated with up-regulation of bcl-x mRNA 

and Bcl-XL protein, but not induction of bcl-2 expression (362). Han et al. report the isolation of 

an HL-60 cell line resistant to 8-CI-cAMP, after growth in concentrations of 10-100 ~M for 4 

weeks, w'hich exhibits up-regulation of bel-XL mR.'i.A. as well as Bel-xL protein (363). Datta et 

al. also report that U937 cells selected for acquired resistance to doxorubicin and vincristine 

were found to eventually overexpress bel-XL mRNA and Bcl-XL protein, and not Bcl-2 to 

biologically significant levels (148). These cell lines, however, were continually exposed to low 

(up to 20 nglml final) concentrations of these cytotoxic drugs in order to generate doxorubicin­

and vincristine-resistant cell lines, and it is controversial whether the up-regulation is due to 

induction or to selection. In addition, these particular studies did not examine Bcl-2 or Bcl-XL 

expression in cells previously treated with high doses of chemotherapeutic drugs or monitored 

after the drugs were removed from the cells. Recently, however, Lee et al. have detected by flow 

cytometry a 3-fold increase in Bel-XL protein in a surviving sub-population of L 121 0 murine 

leukemia cells 24 hours after etoposide treatment (364). This suggests an up-regulation in the 

non-apoptotic population as compared with apoptotic cells \\'hich showed no increase in Bcl-XL 

(364). Furthermore, Yin and Schimke report that HeLa S3 cells which were transfected with 

and overexpress Bcl-2, also show an increased frequency of DHFR gene amplification when the 

transfectants were selected and grown in trimetrexate (354). Although not an up-regulation of a 

bcl-2-related gene itself, Yin and Schimke suggest Bcl-2 is capable of governing the emergence 

of drug resistance by other effects on the genome as well (365). 

2. Biologic relevance. 

Chaudhary and Roninson' s documentation of up-regulation of mdr-l mRNA by 

quantitative RT-PCR in K562, KGl, and H9 leukemia cells after Ara-C, adriamycin, and 

methotrexate treatments (349) is a particularly important demonstration of biologically relevant 

acquisition of a drug-resistance gene occurring specifically at the RNA level. By flow cytometry 

they demonstrated, however, that only 3-17% of K562 cells exposed to different 
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chemotherapeutic drugs exhibited increased mdr-l levels, yet the contribution from this 

percentage was indeed responsible for the level of increase in mdr-l RNA detected by peR 

(349). The demonstrations that induction of a drug resistance gene may occur in only a small 

percentage of cells, and that lower percentages of HL-60/neo cells remain viable after Ara-C 

treatment as compared with HL-60fBcl-2 cells, may explain why induction of bcl-2 mRNA in 

HL-60/neo cells presented in these RP As presented in this Chapter was not readily detectable by 

this method. In addition, while Chaudhary and Roninson demonstrated that although only a 

small percentage of previously treated K562 cells showed up-regulation of mdr-l, the effect was 

indeed biologically relevant since K562 cells that survived Ara-C treatment (exposure to 10 JlM 

for 3 days, then cultured without Ara-C for 6 weeks), showed increased resistance to subsequent 

vinblastine treatment by virtue of a shift in the dose-response curve to vinblastine as compared to 

previously untreated K562 cells (349). Similarly, as presented in this Chapter, assessment of cell 

viability by the MTT assay in previously treated HL-60/neo cells exposed to a second round of 

Ara-C treatment was attempted in order to test the hypothesis that increased Bcl-2 expression 

over time after first HIDAC exposure is biologically relevant as well. HL-60/neo and not HL-

601Bcl-2 cells were used because differences in apoptosis would be better appreciated. Acquired 

increases in Bcl-2 levels render AML HL-60/neo cells more resistant to inhibition of viability by 

various concentrations of Ara-C in a second treatment, as illustrated by a lower percentage of 

inhibition of viability by the MTT assay, lower percentages of cells detected as apoptotic, and 

lower amounts of total DNA breaks detected by the TUNEL assay as compared to previously 

untreated HL-60/neo cells. While the first dose of Ara-C was highest (100 J.1M Ara-C for 4 

hours), the biological significance of increased Bcl-2 levels correlating with increased survival 

capacity is best appreciated when the second treatment of Ara-C is at lower dosage, and further 

reiterates the findings by Manome et al. that Bcl-2-mediated increase in cell survival is more 

effective at lower doses where the observed cytotoxicity may be more likely due to the process 

of frank apoptosis (353). The I.S-fold increase in Bcl-2 levels in surviving HL-60 cells by 48 

hours following Ara-C treatment is not sufficient to completely inhibit apoptosis, reminiscent of 

the unsuccessful attempts in Chapter Two to produce sufficient overexpression of p26Bcl-2 in 

HL-60 using the LacSwitch inducible mammalian expression system. (For this, the 4-fold higher 

level of homogeneous Bcl-2 overexpression retrovirally-transfected in HL-60IBcl-2 clonal 

population D was identified as a threshold for maintenance of protection against apoptosis in 

HL-60 cells in Part A of this chapter.) Nevertheless, the acquired increase in Bcl-2 levels seen 
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even in HL-60/neo cells impact on the extent of Ara-C-induced apoptosis during a second 

exposure to this drug. 

Typical treatment schedules for AML vary, and include rounds or repeated doses of Ara-C 

for over several days for induction of remission (207). The experiments presented in this 

Chapter examine AML cell viability upon re-administration of Ara-C, in the context of up­

regulation of Bcl-2 after HIDAC is withdrawn from the cell culture. This mimics clinical 

infusion of a fixed schedule of Ara-C and physiologic removal of the drug after its metabolism. 

This experiment has then become an in vitro simulation of a problematic clinical scenario in 

which acquired increase of the level of an oncogene which blocks antileukemic drug-induced 

apoptosis may explain the worsening of the response to chemotherapy in leukemia patients. 

While these in vitro experiments demonstrate the statistically significant increases, these 

increases in Bcl-2 levels may obviously be more biologically relevant in vivo where cooperation 

with other oncogenes and factors in the bone marrow environment may further contribute to the 

danger of acquired drug resistance by surviving leukemic cells. Inductions of other gene 

expressions, however, in HL-60/neo cells which survived initial HIDAC treatment and were 

cultivated in culture, cannot be excluded as possible contributors in the increased resistance of 

these cells, since they were not further examined. Nevertheless, this remains an example of 

acquired drug resistance after chemotherapy treatment relevant at biologically significant levels. 

C. Summary. 

The studies in this chapter demonstrate several aspects of Bcl-2-mediated inhibition of Ara­

C-induced apoptosis over time. Not only is a correlation of the level of Bcl-2 expression to the 

degree of protection of HL-60 cells against Ara-C-induced cytotoxicity identified, but 

modulations of Bcl-2 levels in cells which survive Ara-C treatment over time are examined in 

detail. In summary, a) the eventual induction of apoptosis in a small percentage of cells 

overexpressing Bcl-2 is not due to increases in total Bax levels, but due to a possible 

alternative Bcl-2 independent mechanism of Ara-C signalling. b) In addition, cells 

surviving Ara-C-induced apoptosis display modest increases in Bcl-l expression, which are: 

(i) accrued by the contribution of modest induction of hcl-2 at the RNA level, consistent 

with other studies reporting induction of hcl-2 family members, as well as mdT-I, after 

chemotherapy treatment. (ii) This increase in expression of Bcl-2 may also be due to 
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selection of a population of cells that have slightly higher endogenous expression of Bcl-2. 

However, the inability to show heterogeneity of Bcl-2 expression in individual cells of the 

various clonal populations militates against this latter possibility. (iii) Regardless of the 

dominant mechanism underlying the higher Bcl-2 expression observed in the surviving 

cells, this clearly confers a detectable and biologically significant survival advantage 

against subsequent treatment with Ara-C. Furthermore, increases in BcI-2 levels in 

surviving cells following Ara-C treatment are: (iv) independent of p53 expression in HL-60 

cells since HL-60 cells lack p53; (v) not indicative of phosphorylation of Bcl-2 by Ara-C, 

and therefore may not be due to a resulting alteration of the amino acid epitopes that are 

detected by the anti-Bcl ... 2 antibody used in the Western blotting, immunofluorescence, or 

flow cytometric studies presented. 

In Chapter Three it was demonstrated that Ara-C caused early DNA strand breaks even in 

Bcl-2-overexpressing HL-60 cells. If Ara-CTP accumulates even in cells which are not in S 

phase and are not immediately affected (364), an important question then arises as to the 

outcome of Ara-C-induced DNA damage in cells with high Bcl-2 levels which do survive initial 

Ara-C treatment. The hypothesis that surviving cells with high Bcl-2 levels exhibit greater 

capacity for repair of Ara-C-induced DNA strand breaks will be tested in the next chapter. 
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Fjgu re Legends; 

Figure 19: Ara-C-induced internucleosomal and high molecular weight DNA 
fragmentation over time in HL-60/neo cells versus HL-60IBcl-2 clones. 

For Panel A, HL-60/neo (lanes 1 to 5), HL-60IBcl-2 clonal population F (lanes 6 to 10), HL-
601Bcl-2 clonal population D (lanes II to 15), and HL-60IBcl-2 clonal population B (lanes 16 to 
20) were treated with HIDAC (100 J.lM Ara-C for 4 hours). Cells were washed, resuspended in 
fresh drug-free media, and genomic DNA was purified from 106 cells at various time points after 
Ara-C treatment. Equal amounts (1.0 J.lg) of purified genomic DNA was electrophoresed on 
1.00/0 agarose gel to determine internucleosomal DNA fragmentation (panel A). Assessment 
of DNA fragments in each of the lanes are from cells treated as follows: lanes I, 6, 11, 16: 
untreated cells; lanes 2, 7, 12, 17: immediately following 4-hour Ara-C treatment; lanes 3, 8, 13, 
18: 4 hours following 4-hour Ara-C treatment; lanes 4, 9, 14, 19: 24 hours following 4-hour 
Ara-C treatment; lanes 5, 10, 15, 20: 48 hours following 4-hour Ara-C treatment. M represents 
123-bp ladder as marker. 

For Panel B, HL-60/neo (lanes 1 to 5), HL-60IBcl-2 clonal popUlation F (lanes 6 to 10), HL-
601Bcl-2 clonal population D (lanes 11 to 15), HL-60IBcl-2 clonal population B (lanes 16 to 20) 
were treated with HIDAC, washed resuspended in fresh drug-free media as described above, and 
DNA-agarose plugs were prepared from 106 cells, extracted at various time points after Ara-C 
treatment. DNA plugs were subjected to FIGE to determine high molecular weight DNA 
fragmentation (4 to 300 kb size). DNA fragments in each lane are from cells treated as follows: 
lanes I, 6, 11, 16: untreated cells; lanes 7, 12, 17: immediately following Ara-C treatment; 
lanes 3, 8, 13, 18: 4 hours following 4-hour Ara-C treatment; lanes 4, 9, 14, 19: 24 hours 
following 4-hour Ara-C treatment; lanes 5, 10, 15, 20: 48 hours following 4-hour Ara-C 
treatment. 

Data are representative of 3 separate experiments, each with similar results. 

Figure 20: Flow cytometric determination of apoptosis in HL-60/neo cells versus HL-
60/Bcl-2 clonal populations after Ara-C treatment. HL-60/neo or HL-60IBcl-2 clonal 
populations F, D, or B were treated with HIDAC, washed, resuspended in drug-free media. 
At various time points after HIDAC treatment, cells were fixed for flow cytometric analysis 
as described in Materials and Methods. The panel represents flow cytometry histograms 
generated after propidium iodide staining of each cell population for their DNA content. 
Markers MI-M4 were drawn over each region corresponding to sub-G l (apoptotic), G}, S, or 
G2 phase. Arrow points to significantly larger sub-G. peak in HIDAC-treated HL-60/neo 
cells than HL-60IBcl-2 cells. Histograms are representative of 5 separate experiments, each 
with similar results. 

Figure 21: Assessment of cell viability after Ara-C treatment in HL-60/neo cells versus 
HL-60IBcl-2 clones by MTT assay and trypan blue dye exclusion. Graphical 
representation of the data presented in Table IX. Data represent mean ± S.E.M. for n = 5 
experiments. 

Figure 22: Western blots were analyzed for p26Bcl-2 and p21Bax expression in total protein 
extracted from HL-60/neo cells (lanes I to 5), HL-60fBcl-2 clonal population F (lanes 6 to 10), 
HL-60fBcl-2 clonal population D (lanes 11 to 15), and HL-60IBcl-2 clonal population B (lanes 
16 to 20). Cells were treated with HIDAC (100 J..lM Ara-C for 4 hours), washed resuspended in 
fresh drug-free media, and total protein extracted at various time points after Ara-C treatment. 
10 J..lg total protein for p26Bcl-2 immunoblots and 50 J..lg total protein for p21 Sax immunoblots 
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are from cells treated as follows: lanes 1, 6, 11, 16: untreated cells; lanes 2, 7, 12, 17: 
immediately following Ara-C treatment; lanes 3, 8, 13, 18: 4 hours following 4-hour Ara-C 
treatment; lanes 4, 9, 14, 19: 24 hours following 4-hour Ara-C treatment; lanes 5, 10, 15, 20: 48 
hours following 4-hour Ara-C treatment. ECL exposure time was 2 minutes. 

Data are representative of 3 separate experiments, each \vith similar results. 

Figure 23: Immunofluorescent analysis of Bcl-2 levels in non-apoptotic HL-60/neo and HL-
601Bcl-2 cells surviving immediately, 24 and 48 hours after HIDAC treatment, is expressed as 
mean fluorescent intensity per non-apoptotic cell (top graph) and as percent of control (bottom 
graph) for each of 4 cell lines assessed. Cells were fixed, permeabilized, and stained for p26Bcl-
2 as described in the text, and intensity of Bcl-2 staining was measured in at least 30 cells per 
condition. Bars represent mean ± SEM for 3 individual experiments. 

Figure 24: Results of ribonuclease protection assay for hcl-2 mR:.~A expression relative to 
f3-actin mRNA expression in HL-60/neo and HL-60IBcl-2 clonal population B cells treated with 
Ara-
C for various time intervals. Total RNA was extracted and 50 Jlg per condition was hybridized 
with RNA probes prepared and in vitro transcribed as described in the Materials and Methods 
section of the text. 

Panel A sho\vs bcl-2 and f3-actin mRNA signals from the same X-ray film from HL-60/neo 
(lanes 1-6) and HL-60/Bcl-2 cells (lanes 7-12) either untreated (lanes 1,7) or treated with 100 
J.lM Ara-C for 2 hours (lanes 2, 8), 4 hours (lanes 3, 9), and also examined 4, 8, and 24 hours 
after removal of Ara-C from the culture medium (lanes 4 and 10, 5 and I 1, and 6 and 12, 
respectively). 

Horizontal scanning densitometry generated values for bcl-2: p-actin mRNA levels expressed in 
the graphs in Panel B, and demonstrates that only in HL-60/Bcl-2 cells (right graph) \\;'as 
induction of bcl-2 mRNA seen to reach over 100% as compared to untreated cells. 

Panel C shows bcl-2:Rr-actin mRNA signals from the same X-ray film when HL-60IBcl-2 cells 
were either untreated (lane 1) or treated with 100 JlM Ara-C for various intervals (lane 2, 7: 2 
hours; lanes 3,8: 4 hours; lanes 4, 5, 6 and 9, 10, 11: 4, 8, and 24 hours after removal of Ara-C) 
in the absence (lanes 1-6) or presence (lanes 7-11) of 5 J.lglml actinomycin D. 

Similarly, horizontal scanning densitometry generated values for relative bcl-2:rJ-actin mRNA 
levels, expressed in Panel D, and demonstrates that induction of bcl-2 mRNA above 1000/0 of 
control was abrogated by concomitant actinomycin D treatment. These data are represented in 
Table XIII. Data are representative of 3 separate experiments, each with similar results. 

Figure 25. The effect of concomitant actinomycin D and cycloheximide exposures on the 
induction of Bcl-2 levels. Flow cytometric analysis of Bcl-2 levels in HL-60/neo (top graph), 
HL-60IBcl-2 F (middle graph) and HL-60/8cl-2 B (bottom graph) cells surviving after Ara-C 
treatment is expressed as percent increase over control, and tabulated in Table XIV. Bars 
represent mean ± S.E.M. for n = 3 experiments. 

Figure 26. Top panel represents final results in 96-well plates of MTT assay for cell viability in 
HL-60/neo cells either previollsly untreated (left side of plate) or previously pre-treated with 100 
JlM Ara-C for 4 hours (HIDAC) (right side of plate), surviving washed 5-6 times with sterile 
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PBS and spun over a histopaque gradient daily to remove dead cells for 3 days. On day 3, pre­
treated cells as well as previously untreated cells were exposed to various concentrations of Ara­
C (100 nM to 100 J..lM for 4 hours), washed, cells plated in replicates of 5 wells per condition, 
and viability assessed by the MTT assay as described in Materials and Methods. The image in 
Panel A demonstrates \vell with viable cells as those containing higher amounts of extractable 
mitochondrial enzymes and thus having darker hue. Quantitative analysis of the absorbance of 
each well from a Anthos plate reader is tabulated in Table XV below. Image in the top panel is 
representative of 3 separate experiments, each with similar results. 

Figure 27. Flow cytometric determination of Ara-C-induced apoptosis in previously 
untreated HL-60/neo cells (top row) versus HL-60/neo cells previously treated with HIDAC 
and cu1tivated as previously described (bottom row) are illustrated by histograms generated after 
propidium iodide staining for DNlt\ content when both populations were exposed to increasing 
concentrations of Ara-C. Marker M 1 represents the sub/G 1 (apoptotic) population in each 
condition. The figure is merged with Table XVI, which shows percentages of cells detected as 
apoptotic by both flow cytometric and microscopic determinations underneath each histogram 
for the given condition. Total DNA breaks detected by the TUNEL assay (described in rvlaterials 
and Methods) is expressed as mean fluorescent intensity of fluorescein-labelled DNA breaks. 
Data are representative of 4 separate experiments. 

Figure 27a. Assessment of cell viability by MTT assay and flow cytometric 
determination of apoptosis in HL-60/neo cells after first and second treatments with 
Ara-C. Graphical representation of the data presented in Figure 27/ Table XVI. Data are 
representative of mean ± S.E.M. for n = 4 experiments. 
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Table VUl. 
FLOW CYTOMETRIC DETERMINATION OF APOPTOSIS IN 

HL-60/neo CELLS VERSUS HL-60/Bcl-2 CLONES AFTER ARA-C TREATMENT:* 

0/0 APOPTOTIC CELLS: 

Condition: HL-60/neo: HL-60/Bcl-2 F: HL-60/Bcl-2 D: HL-60/Bcl-2 B: 

control 3.27 ± 2.67 2.13 ± 0.88 1.57 ± 0.18 1.97 ± 0.52 

o hr post Ara-C 36.93 ± 6.96 2.75 ± 1.20 1.60 ± 0.10 1.70 ± 0.38 

4 hrs post f\ra-C 40.73 ± 4.99 14.00 ± 3.70 7.20 ± 2.80 6.43 ± 1.97 

24 hrs post Ara-C 40.27 ± 8.23 17.55 ± 0.65 15.50 ± 3.40 7.63 ± 2.10 

48 hrs post Ara-C 30.00 ± 9.96 19.85 ± 3.25 19.03 ± 1.77 11.53 ± 2.42 

* Values represent mean ± S.E.M. for n = 5 experiments. Values obtained between identically 
treated HL-60/neo and HL-60/BcI-2 F, D, B clones are significantly different (p < 0.01) for each 
condition after Ara-C treatment. 

FLOW CYTOMETRIC DETERMINATION OF APOPTOSIS 
IN HL-60/neo CELLS VERSUS HL-60IBcl-2 CLONES 
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Figure 21: 
ASSESSMENT OF CELL VIABILITY AFTER ARA-C TREATMENT 

IN HL-60/neo CELLS VERSUS HL-60IBcl-2 CLONES 
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TABLE IX. 
Part I. ASSESSMENT OF CELL VIABILITY AFTER ARA-C TREATMENT 

IN HL-60/neQ CELLS VERSUS HL-6O!Bcl-2 CLONES BY MTT ASSAY: 

% INHIBITION OF VIABILITY: 
CQndition: HL-60/n~Q: HL-60/Bcl-2 F: HL-60IBcl-2 D: HL-60/B~I-2 B: 

* ** *** **** 
o hrs post Ara-C 31.90 3.75 7.89 0.00 

4 hrs post Ara-C 40.32 ± 0.42 15.38 ± 5.76 15.27 ± 7.33 15.22 ± 0.56 

12 hrs post Ara-C 42 .. 32 ± 5.04 28.69 ± 6.25 23.23 ± 6.86 33.60 ± 8 .. 17 

20 hrs post Ara-C 68.30 ± 3 .. 20 ND 57.41 ± 2.16 46.30 ± 6.40 

24 hrs post Ara-C 68.85 ± 6.60 65.93 ± 3.79 59.95 ± 4.65 52.23 ± 4.14 

48 hrs post Ara-C 70.71 ± 3.46 72.42 ± 1.12 57.25 ± 1.50 46.93 ± 6.78 

Values represent means ± S.E.M. for n = 5 experiments . 

140 

.. Values obtained in identically treated HL-60/neo cells versus HL-60IBcI-2 D or B clones are significantly 
different from each other (p < 0.05). 

** Values obtained in identically treated HL-60/neo cells versus HL-60/BcI-2 F clones are significantly 
different (p < 0.05) for only 0, 4, 12 hrs post Ara-C. Values are not significantly different from each other (p > 
0.05) for 24, 48 hrs post Ara-C. 

*.... Values obtained in identically treated HL-60/BcI-2 D clones versus HL-60/BcI-2 B clones are not 
significantly different (p > 0.05). 
***.. Likewise, values obtained in identically treated HL-60IBcI-2 D or B clones versus HL-60IBcI-2 F clones 
are not significantly different (p > 0.05) for only 0, 4, 12 hrs post Ara-C. values are significantly different (p < 
0.05) for 24, 48 hrs post Ara-C. 

Part II. ASSESSMENT OF CELL VIABILITY AFTER ARA-C TREATMENT IN 
HL-6Q/neo CELLS VERSUS HL-60/Bcl-2 CLONES BY TRY PAN BLUE DYE EXCLUSION*: 

°LO VIABLE CELLS EXCLUDING DYE: 
Condition: HL-60/neo: HL-60/Bcl-2 F: HL-60/Bcl-2 D: HL-60IBcl-2 B: 

o hrs post Ara-C 97.24 ± 3.34 97.26 ± 0.90 99.50 ± 0.41 97.39 ± 2.29 

4 hrs post Ara-C 84.86 ± 1.04 95.34 ± 3.06 92.13 ± 2.22 98.54 ± 0.72 

8 h rs post Ara-C 80.04 ± 3.27 97.33 ± 0.53 96.62 ± 0.38 99.50 ± 0.33 

12 hrs post Ara-C 66.43 ± 5.89 85.96 ± 4.66 82.83 ± 1.10 90.53 ± 1.44 

24 h rs post Ara-C 48.06 ± 10.93 79.95 ± 2.94 79.42 ± 6.23 85.61 ± 1.28 

48 hrs post Ara-C 44.74 ± 4.70 53.05 ± 5.06 54.44 ±0.62 79.43 ± 4.44 

* Values represent means ± S.E.M. for n = 5 experiments. 
Values obtained for identically treated HL-60/neo cells versus HL-60/BcI-2 clones are signficantly different (p < 
0.05) up to 24 hrs post Ara-C. 
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Figure 22. 

Figure 22. 
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TABLE X. ASSESSMENT OF p26Bcl-2:p21Bax RATIOS BY WESTERN BLOT 
IN HL-60/neo CELLS VERSUS HL-60/Bcl-2 CLONES AFTER ARA-C TREATMENT: 

RELATIVE RATIO OF p26Bcl-2:p21Bax BANDS AFTER DENSITOMETRY*: 

Condition: HL-60/neo: HL-60/Bcl-2 F: HL-60/Bcl-2 D: HL-60/Bcl-2 B: 

control 2.47 ± 0.42 6.33 ± 0.96 7.04 ± 0.87 10.11± 1.67 

o hrs post Ara-C 2.85 ± 0.49 7.42 ± 0.79 8.47 ± 1.35 10.87 ± 1.75 

4 hrs post Ara-C 2.54 ± 0.34 7.96 ± 1.13 8.29 ± 1.53 10.71 ± 1.58 

24 hrs post Ara-C 3.17 ± 0.50 9.53 ± 0.87 9.98 ± 1.86 11.36 ± 1.70 

48 hrs post Ara-C 3.49 ± 0.66 9.45 ± 1.13 11.29 ± 1.81 12.36 ± 0.68 

* Values represent mean ± SEM for n = 3 experiments. Values obtained for identically treated HL-
60/neo, HL-60/BcI-2 F and D clones are significantly different (p < 0.05) by paired t-test for control 
versus 48 hrs post Ara-C samples within each population. 

ASSESSMENT OF p26Bcl-2:p21Bax RATIOS BY WESTERN BLOT 
IN HL-60/neo CELLS VERSUS HL-60/Bcl-2 CLONES 
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Figure 23. 
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TABLE XI. 

ASSESSMENT OF Bcl-2 LEVELS BY IMMUNOFLUORESCENCE MICROSCOPY 
IN NON-APOPTOTIC Hk60/neo CELLS VERSUS HL-60/Bcl-2 CLONES 

AFTER ARA-C TREATMENT:* 

MEAN FLUORESCENT INTENSITY PER NON-APOPTOTIC CELL: 

Condition: HL-60/neQ: HL-60/Bcl-2 F: HL-60/Bcl-2 D: HL-60/Bcl-2 B: 

control 0.0137 ± 0.0038 0.0510 ± 0.0022 0.0677 ± 0.0013 0.0698 ± 0.0027 

o hrs post Ara-C 0.0144 ± 0.0087 0.0555 ± 0.0054 0.0825 ± 0.0025 0.0891 ± 0.0028 

24 hrs post Ara-C 0.0323 ± 0.0146 0.0593 ± 0.0027 0.0946 ± 0.0170 0.1166 ± 0.0026 

48 hrs PQst Ara-C 0.0666 ± 0.0013 0.0845 ± 0.0091 0.1115 ± 0.0069 0.1534 ± 0.0059 

• Values represent mean ± S.E.M. for n = 3 experiments. Values obtained for identically treated 
HL-60/neo and HL-60IBcl-2 F, D, B clones are significantly different (p < 0.05) for control versus 48 
brs post Ara-C samples within each population. 

ASSESSMENT OF 8cl-2 LEVELS BY IMMUNOFLUORESCENCE MICROSCOPY 
IN NON-APOPTOIIC HL-60/neQ CELLS VERSUS HL-60IBcl-2 CLONES 

AFTER ARA-C TREATMENT:· / 

MEAN FLUORESCENT INTENSITY PER NON-APOPTOIIC CELL: 
(% cQntrol) 

Condition: HL-60/neo: HL-60/Bcl-2 F: HL-60IBcl-2 D: HL-60IBcl-2 B: 

control 100.00 100.00 100.00 100.00 

o hrs post Ara-C 107.91 ± 2.68 121.20 ± 32.65 136.59 ± 6.29 108.81 ± 2.89 

24 hrs post Ara-C 198.51 ±7.93 138.59 ± 24.58 140.77 ± 6.01 122.43 ± 10.12 

48 hrs post Ara-C 488.89 ± 4.19 155.44 ± 11.55 178.68 ± 37.93 187.74 ± 22.08 

• Values represent mean ± S.E.M. for n = 3 experiments. Values obtained for identically treated 
HL-60/neo and HL-60IBcl ... 2 F, D, B clones are significantly different (p < 0.05) for control versus 48 
hrs post Ara-C samples within each population. 
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TABLE XII. FLOW CYTOMETRIC DETERMINATION OF BcI-2 LEVELS 
IN HL-60/neo CELLS VERSUS HL-60/BcI-2 CLONES AFfER ARA-C TREATMENT: 

Condition: 

control 

o hrs post Ara-C 

4 hrs post Ara-C 

24 hrs post Ara-C 

48 hrs post Ara-C 

TOTAL Bcl-2 FLUORESCENCE IN NON-APOPTOTIC CELLS 
(FITC-Bcl-2 Gl + S + G2) (with 010 of control)*: 

HL-60/neo: HL-60IBcl-2 F: HL-60IBcl-2 D: HL-60IBcl-2 B: 

10.67 ± 4.29 55.01 ± 21.64 95.67 ± 12.54 115.60 ± 19.93 

14.20 ± 4.87 61.56 ±14.56 110.50 ± 14.03 129.90 ± 31.90 
(111.82 ± 10.60) (105.00 ± 12.71) (115.64 ± 5.72) (113.32 ± 7.47) 

14.47 ± 3.95 67.53 ± 17.96 117.55 ± 22.37 137.50 ± 30.47 
(124.90 ± 14.12) (116.40 ± 10.44) (121.40 ± 7.52) (122.60 ± 13.68) 

16.40 ± 3.98 76.48 ± 20.91 130.80 ± 26.57 151.40 ± 57.21 
(144.38 ± 14.77) (154.41 ± 25.74) (134.99 ± 13.40) (150.59 ± 6.41) 

18.29 ± 5.45 87.03 ± 10.07 157.62 ± 39.57 212.37 ± 52.46 
(150.43 ± 18.61) (170.80 ± 26.89) (157.16 ± 19.87) (161.58 ± 19.28) 

* Values represent mean ± SEM for n = 5 experiments. Values obtained for identically treated HL-
60/neo and HL-60/BcI-2 F, D, B clones are significantly different (p < 0.05) for control versus 48 hrs post 
Ara-C samples within each population. 

FLOW CYTOMETRIC DETERMINATION OF Bcl-2 LEVELS 
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TABLE XIII. 

INDUCTION OF hcl-2 mRNA ASSESSED BY 
RIBONUCLEASE PROTECTION ASSAY IN 

HL-60/neo AND HL-60IBcl-2 CELLS FOLLOWING ARA-C TREATMENT*: 

(Ratio bcl-2:[}actin mRNA levels expressed as % control): 

Condition; HL-60/neo; HL-601B~1-~ : 
2hrHIDAC** 89.29 ± 3.08 118.45 ± 9.64 
4hrHIDAC 99.56 ± 7.62 121.01 ± 8.39 
4hr post-HIDAC 91.89 ± 4.19 125.04 ± 9.94 
8hr post-HIDAC 82.52 ± 5.64 114.01 ± 6.87 

24hr post-HIDAC 96.20 ± 7.28 108.45 ± 7.26 

2hr HIDAC + Act D# ND 101.94 ± 6.28 
4hr HIDAC + Act D ND 97.96 ± 4.46 
4hr post-HIDAC + Act D ND 86.78 ± 1.30 
8hr post-HIDAC + Act D ND 95.75 ± 3.58 

24hr post-HIDAC + Act D ND 95.16 ± 7.17 

* Values represent mean ± S.E.M. for horizontal scanning densitometry values of bcl-2: p-actin 
mRNA bands on X-ray films from n = 4 experiments. 
** HIDAC indicates treatment with lOOJ.lM Ara-C for the designated exposure interval. 
# Act D indicates usage of 5J.lglml actinomycin D as an inhibitor of RNA transcription. 
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www.manaraa.com

149 

TABLE XIY. FLOW CYTOMETRIC DETERMINATION OF 8cl-2 LEVELS 
IN Hk60/neo CELLS VERSUS HL·60/Bcl-2 CELLS AFTER ARA-C TREATMENT: 

Effect of concomitant actinomycin DI cyclobeximide incubations: 

TOTAL Bcl-2 FLUORESCENCE IN NON-APOPTOTIC CELLS 
(FITC-Bcl-2 G 1 + S + Gz) (% control):# 

Condition: HL-60/neo: Hk601Bcl-2 F: 

o hrs post Ara-C 111.82 ± 10.60 105.00 ± 12.71 

+ actinomycin D* 98.54 ± 6.41 111.42 ± 11.83 

+ cycloheximide** 105.14 ± 3.33 108.75 ± 9.79 

24 hrs post Ara-C 144.38 ± 14.77 154.41 ± 25.74 

+ actinomycin D* 113.68 ± 21.16 116.03 ± 4.00 

+ cycloheximide** 103.53 ± 14.46 111.06 ± 8.28 

48 hrs post Ara-C 150.43 ± 18.61 170.80 ± 26.89 

+ actinomycin D* 92.02 ± 11.30 98.36 ± 12.91 

+ cycloheximide** 107.83 ± 7.62 96.65 ± 5.44 

Values represent mean ± S.E.M. for n = 3 experiments. 
* 5 J.lglml actinomycin 0, prepared as listed in Materials and Methods. 

** 10 Jlglml cycloheximide, prepared as listed in Materials and Methods. 

Hk60/Bcl-2 B: 

113.32 ± 7.47 

106.98 ± 15.06 

96.07 ± 13.95 

150.59 ± 6.41 

105.21 ± 6.66 

102.11 ±7.S4 

161.58 ± 19.28 

90.01 ± 13.49 

99.91 ± 10.67 
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Figure 26. 

TABLE XV. ASSESSMENT OF CELL VIABILITY BY MTT ASSAY 
OF HL-60/neo CELLS SURVIVING AFTER 

FIRST AND SECOND TREATMENTS WITH ARA-C: 

Inhibition of cell viability 
(compared to untreated control)*: 

Condition: First treatment: Post-HIDAC**: 

100 nM Ara-C, 4 hrs 10.41 ± 5.46 0.00 ± 0.00 

1 J.1M Ara-C, 4 hrs 33.84 ± 12.63 3.27 ± 3.78 

10 J.1M Ara-C, 4 hrs 58.85 ± 4.43 40.27 ± 11.77 

100 J.1M Ara-C, 4 hrs 59.11 ± 2.44 52.04 ± 5.11 

* Values represent mean ± S.E.M. for n = 3 experiments. 
** HL-60/neo cells were treated with high-dose Ara-C (HIDAC=100 J,lM Ara-C, 4 hrs), 

washed S times with warm sterile PBS, histopaqued daily for three days to remove 
dead cells, and returned to fresh RPMI 1640 medium containing 10% FBS, prior 
to re-treatment with increasing concentrations of Ara-C. 

151 
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Figure 271 Table XVI. 

FLOW CYTOMETRIC DETERMINATION OF APOPTOSIS IN HL-60/neo CELLS 
AFTER FIRST AND SECOND TREATMENTS WITH ARA-C:* 

152 

HL-60/nco (pn:=HIDAC): 
tontml 100 oM Ara-C luM Ara-C l.O..l,M Ara-C 

'3:032896131 (FL3-A-FL3-Ar~~J '3:032896132 CFL3-A-FL3-Ar.aJ 13:133289603 CFL3-A-FL3-Ar.aJ 13:03289604 CFL3-A-FL3-Ar@aJ 

e 2ee 4ee Gee 8ee 1 eee 

I. Pre-HIDAC**: 
Condition: Control lOOnM Ara-C 

% apoptosjs (PI now cytometry); 5.15 ± 2.18 
0;. apoptosjs (morpholoC)j 0.66 ± 0.33 
Intensity o( total DNA breaks (IUNEL assay); 13.55 ± 2.92 

HL-60/neo (post-HJDAC): 
tontml 100 oM Ara-C 

13 2ee 4ee 6ee see 1 eee o 2ee 400 61313 see 1131313 

Ij.1M Ara-C 

34.29 ± 2.28 
23.94 ± 0.18 
15.83 ± 3.97 

10UM Ara-C 

54.93 ± 2.67 
39.21 ± 3.05 
21.44 ± 12.06 

lO.."M Ara-C 

'3:1332896136 (FL3-A-FL3-AreaJ 13:1332896137 CFL3-A-FL3-AreaJ 13:1332896138 CFL3-A-FL3-AreaJ 13:1332896139 CFL3-A-FL3-AreaJ 

II. PQ:st-HIDAC: 
Condition: Control JOOnM Ara-C 

0;. apoptosjs (PI now cytometry); 6.04 ± 2.81 
0/. apoptosis (morpholoey)' 7.64 ± 1.13 
Intensity o( total DNA break" CIUNEL usaY)j 12.75 ± 1.07 

tj.1M Ara-C 

13.16 ± 3.40 
8.74 ± 0.28 

13.28 ± 1.28 

13 21313 400 6ee 81313 1131313 

lOj.1M Ara-C 

36.34 ± 3.75 
21.23 ± 1.92 
14.78 ± 1.94 

• Values represent mean ± S.E.~f. (or n=4 experiments. where HL-60/neo cells were exposed to various 
concentrations o( Ara-C either prior or (ollowing initial HIDAC treatment aad subsequent cultivation o( 
survivin& cells (or 12 hours IS described in Materi.ls .nd Methods. Values obtained (or HL-60/neo cells upon 
second HIDAC treatment are si&nificantly different (p<O.05) than those obtained (or HL-60/neo cells upon first 
HIDAC treatment • 

•• HIDAC indicates treatment with l00~M Ar.-C (or" hours. 
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Figure 27a. ASSESSMENT OF CELL VIABILITY BY MTT ASSAY 
IN HL-60/neo CELLS AFTER FIRST AND SECOND 

TREATMENTS WITH ARA-C 
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CHAPTERV. 

Overexpression of p26Bcl-2 in acute myeloid leukemia HL-6Q cells 

blocks Ara-C-induced apoptosis, but does not increase repair of 

Ara-C-induced DNA damage. 
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CHAPTER V: OVEREXPRESSION OF p26Bcl-2 IN ACUTE MYELOID LEUKEMIA 
HL-6Q CELLS BLOCKS ARA-C-INDUCED APOPTOSIS. BUT DOES NOT INCREASE 
REPAm OF ARA-C-INDUCED DNA DAMAGE: 

Abstract: 

The effect of high intracellular levels of p26Bcl-2 on the repair of Ara-C-induced DNA 

damage \vas examined in AML HL-60 cells. For these studies, retrovirally-transfected HL-

60/neo, and HL-60/Bcl-2 cells, which exhibited highest overexpression of p26Bcl-2, and by 

immunofluorescence measured 6.3 times higher Bcl-2 intensity than HL-60/neo cells, were 

utilized. As compared to untreated cells, treatment with high-dose Ara-C (100 J..lM for 4 hours) 

markedly inhibited eH]-thymidine incorporation in HL-60/neo as well as HL-60/Bcl-2 cells. 

This inhibition lasted up to 24 hours after Ara-C was removed from the culture condition. To 

determine whether the recovery of DNA synthesis occurs following its inhibition by Ara-C, the 

persistence of Ara-C-induced DNA lesions over time after Ara-C treatment was compared by 

two assays in HL-60/neo versus HL-60/BcI-2 cells. By alkaline elution analysis, Ara-C-induced 

DNA strand breaks 4 and 24 hours following HIDAC treatment were demonstrated to be similar 

in amount between HL-60/neo and HL-60IBcl-2 cells. Co-culture with aphidicolin, an inhibitor 

of repair synthesis of DNA, to the culture medium for 4 hours following HIDAC treatment 

resulted in similar increases in the elutable DNA fragments in both HL-60/neo and HL-60IBcl-2. 

PCR of the genomic DNA, following HIDAC treatment of HL-60/neo and HL-60IBcl-2 cells, 

demonstrated that the nonspecific damage to DNA templates caused a decrease in the ability of 

TaqDNA polymerase to amplify sequences from the c-myc, relative to tPA (amplified as a 

reference), gene. Regardless of the differences in numbers of apoptotic cells, the amplified c-myc 

gene products could be recovered at an equivalent rate in both HL-60/neo and HL-60/Bcl-2 cells 

following HIDAC treatment. Unscheduled DNA synthesis was also examined in the two cell 

lines. Flow cytometric determination of bromodeoxyuridine incorporation in S-phase versus 

non-S-phase cells after Ara-C treatment demonstrated that there was no significant difference in 

the unscheduled DNA synthesis in HL-60/neo, as compared to HL-60IBcl-2 cells. Taken 

together, these data indicate that following HIDAC treatment, while overexpression of p26Bcl-2 

blocks Ara-C-induced apoptosis and promotes greater cell viability, this is not due to an increase 
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in the repair of Ara-C-induced DNA damage as a result of p26Bcl-2 overexpression. These data 

show that the early events including DNA damage and its repair are not affected by 

overexpression of Bcl-2. Hence, they suggest distally operative protective role of p26Bcl-2 in 

preventing the conversion of Ara-C-induced potentially reparable DNA damage into lethal DNA 

fragmentation associated with apoptosis. 

Introduction: 

Damage to genomic DNA must be repaired in order for its efficient replication and for the 

survival of an organism. Lesions such as incorporated abnonnal nucleotides and inter- or intra­

strand cross-links must be removed from template DNA, excised as either a single base, as a 

nucleotide, or an oligonucleotide stretch. Repair of DNA damaged from chemicals has been best 

studied in E. coli, in which several DNA repair systems have been identified and well defined 

(reviewed in 367-370). 

Nucleotide excision repair in eukaryotic cells is far more complex. The extensive proteins 

involved are more numerous, and are still under investigation. Human excinuclease itself 

requires the activity of at least 17 polypeptides (371, 372). The excision repair genes of E. coli 

(uvrA, uvrB, uvrC) show no homology to the known human excision repair genes (367). 

However, the excision repair genes of S. cerevesiae are highly homologous to some human 

excision repair genes, such as the ercc genes (367, 370). These genes were discovered by virtue 

of their ability to rescue excision repair-deficient mutant rodent cells when transfected, and were 

thus called ~xcision repair ~ross ~omplementing rodent repair deficiency (ercc) genes when 

cloned. The human ercc-l gene encodes a protein with various domains including a nuclear 

localization capability and a "helix-turn-helix" DNA-binding motif (370). The ercc-2 and ercc-3 

genes encode DNA helicases responsible for unwinding DNA, and were cloned when discovered 

to correct incision defects and UV-sensitivity of rodent mutants (370, 373). Mismatch repair of 

DNA bases has been described as a specific type of nucleotide excision repair in eukaryotes. 

Most recently, mutations in DNA repair genes such as Msh2 and MLH1, homo logs of bacterial 

DNA mismatch repair genes mutS and mulL, have been associated with progression of hereditary 

nonpolyposis colorectal cancer (374, 375). 
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Repair of Ara-C DNA. 

The majority of DNA damage caused by anticancer drugs can be eliminated from DNA by 

nucleotide excision repair (371). However, while several reports in the literature document the 

usage of Ara-C as an inhibitor of repair itself, and specifically, the inhibition of the gap-filling 

step during excision repair (376, 377), there are very few reports documenting the mechanism of 

repair of DNA with incorporated Ara-C residues. As previously described, l-~D­

arabinofuranosylcytosine (Ara-C) differs from nonnal deoxycytidine by the presence of a 13-0H 

group in the 2' position of the sugar (224, 225). When incorporated into DNA, this altered 3' 

terminal-OH group of Ara-C has less reactivity, and impedes efficient DNA chain elongation by 

DNA polymerase, not necessarily by inhibiting initiation, but by slowing extension of new DNA 

strands as illustrated by Ross (236, 237). Removal of the impaired base is required to restore 

normal DNA synthesis. It is predicted that the 3'-5' exonuclease activity associated with DNA 

polymerase itself could excise the arabinosyl residue (223). In vitro experiments in cell-free 

systems using purified mammalian DNA polymerase have demonstrated that excision of I-P-D­

arabinofuranosyladenosine (Ara-A) is necessary for further DNA synthesis. However, Tsang 

Lee et al. demonstrated that 6-mercaptopurine ribonucleotide 5' -monophosphate (6-MPR-P) 

increases incorporation of Ara-AMP into DNA by selectively inhibiting the 3'-5' exonuclease 

activity of DNA polymerase, and therefore preventing excision of incorporated Ara-AMP into 

DNA chains (378). In contrast, the exonuclease activity copurified and associated with herpes 

simplex virus type I DNA polymerase was also demonstrated to remove Ara-AMP residues in a 

GMP-dependent manner in an artificial system (379). DNA polymerase is then assumed to be 

able to proceed with repair synthesis. 

Various studies have sought to define which DNA polymerase(s) are involved in 

mammalian repair synthesis. While DNA polymerase Cl is thought to be mainly responsible for 

DNA replication (380), both DNA polymerases a and J3 are involved in repair synthesis, and the 

extent to which each one is involved is dependent upon the type as well as concentration of the 

DNA damaging agent (380, 381). There are many conflicting reports in the literature concerning 

the roles of these two polymerase in DNA repair; however, Miller and Chinault have attempted 

to explain their involvement. Both can be inhibited by Ara-CTP to different extents (380, 382). 

However, DNA polymerase J3 may still be able to function, although not as efficiently, in 

replication and repair in the presence of Ara-C, and hence, Ara-CTP can be eventually 
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incorporated into intemucleotide position through slow chain extension from the altered terminal 

Ara-C residue (223, 236). Subsequently, the removal of the impaired base may be difficult to 

detect (383). 

Other DNA polymerases are extensively mentioned in the DNA repair literature. While 

DNA polymerase r is thought not to be involved in mammalian repair synthesis (382), DNA 

polymerases 0 and e may be involved in DNA repair in conjunction with other accessory proteins 

such as proliferating cell nuclear antigen (PCNA), replication protein A (RP A), and RCF 

replication factor C (RPC) (367), as demonstrated in the repair of UV -induced DNA damage. 

Aboussekhra et ale report that complete repair of UV -induced DNA damage is achieved by the 

combined action of about 30 polypeptides including DNA polymerase E, RFC, PCNA, and ligase 

I activities following incision activities achieved RP A, XPA, TFIIH, which contains XPB and 

XPD, XPC, UV-DDB, XPG, ERCC/XPF complex, and factor IF7 (384). Poly(ADP-ribose) 

polymerase (PARP) is also thought to be involved in the repair of different types of DNA 

damage in eukaryotes by virtue of its increased activity during the induction and repair of single­

strand and double-strand DNA breaks (385-387). Also known as poly(ADP-ribose) transferase 

or poly(ADP-ribose) synthetase, PARP is an enzyme which converts NAD to nicotinamide and 

protein-linked ADP-ribose polymers (385, 388, 389), and is activated when it binds to damaged 

DNA. Activated PARP adds poly(ADP-ribose) chains to various nuclear polypeptides as well as 

itself, and this automodification facilitates its own release from damaged DNA to pennit DNA 

repair enzymes to access DNA breaks (385, 390). PARP is also proposed to prevent DNA 

recombination processes and to facilitate DNA ligation (391). In vitro reconstitution studies 

have demonstrated, however, that several polymerases and even Klenow fragment of polymerase 

I are capable of performing repair synthesis, and illustrate that it is difficult to assign a specific 

polymerase to a specific repair situation (367, 384). However, while DNA polymerases () and E 

can also be inhibited by Ara-C (392), the roles of these polymerases, as well as the roles of the 

ercc gene product or the mismatch repair genes msh2 and mlhl, have not yet been specifically 

implicated in repair of DNA with incorporated Ara-C residues, and are not specifically addressed 

in these studies. 

Studies in this dissertation have demonstrated that Ara-C induces equivalent damage to 

genomic DNA in both HL-60/neo and HL-60 cells overexpressing Bcl-2 (HL-60IBcl-2 cells) 
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(Chapter Three). However, lethal double-strand DNA breaks associated with Ara-C-induced 

apoptosis are prevented in Bcl-2-overexpressing cells (Chapters Three and Four). While these 

findings are consistent with previous reports which show no effect of Bcl-2 overexpression on 

early DNA damage (10 1-103), Bcl-2 may impede other genotoxic insults. Hashimoto et al. have 

recently demonstrated that although Bcl-2 overexpression in V79 Chinese hamster cells 

exhibited equivalent DNA strand breaks induced by the topoisomerase II inhibitor etoposide 

(VP-16) as compared to V79/neo cells, Bcl-2 overexpression blocked subsequent etoposide­

induced DNA recombination by sister chromatid exchange and mutation frequency, leading to 

higher survival (393). Similarly, if Ara-C-induced DNA strand breaks still occur in HL-60IBcl-2 

cells, it is important to identify what Bcl-2 either promotes or inhibits such that progression to 

further DNA damage is impeded. Furthermore, Chapter Four of this thesis also shows that HL-

60/neo or HL-60IBcl-2 cells which sustain initial Ara-C-induced DNA damage, and yet survive 

over time, exhibit increased levels of Bcl-2. In order to explain the increased survival of HL-

601Bcl-2 cells after Ara-C treatment, the question was asked whether increased Bcl-2 levels 

promote more repair of Ara-C-induced DNA damage over time. 

There are presently no instances documented in the literature where increased nucleotide 

excision repair contributes to drug resistance in cancers (371), save one report in which 

retroviral-mediated transfer of the 0 6 -methylguanine DNA methyltransferase (MGMI) gene to 

bone marrow stem cells decreases the cytotoxicity of the chemotherapeutic alkylating agent 1,3-

bis(2-chloroethyl)-I-nitrosourea (BCNU) by increasing the capacity for repair of DNA 

interstrand crosslinks in these target cells (394). By contrast, in the case of cisplatin-induced 

DNA damage, high mobility group (HMG)-domain proteins which bind to 1,2-intrastrand DNA 

cross-links caused by cisplatin inhibit their repair, and may affect response to chemotherapy 

(395-398). The studies in this chapter, examine whether AML cells which possess high levels of 

Bcl-2 and are resistant to the cytotoxic effects of Ara-C also possess increased repair capacity as 

assessed by incorporation of thymidine and thymidine analogs:; and persistence of lesions in 

DNA templates. 
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Materials and Methods: 

• Drugs. Ara-C and aphidicolin were both purchased from Sigma Chemical Co. (St. Louis, 

MO). Ara-C was prepared as described in Chapter Two. Aphidicolin was prepared as a 10 mM 

stock in dimethylsulfoxide (DMSO, Fisher Chemicals), and aliquots were stored at -20oe until 

just prior to use. 

• Transfectioo of HL-60 Cells. HL-60/neo and HL-60IBcl-2 cells were generated by retroviral­

mediated transfection of HL-60 parental cells with the neomycin resistance gene alone or in 

combination with bcl-2 cDNA as described in Chapter Two. Subcloning of HL-60/Bcl-2 cells 

by limiting dilution generated various clones with disparate levels of homogeneous 

overexpression of p26Bcl-2, as described in Chapter Four. Clonal population B, which exhibited 

p26Bcl-2 expression 6.3 times greater than HL-60/neo cells by immunofluorescence (described 

in Chapters Two and Four), was used for the studies presented in this chapter. 

!llW Thymidine [TdR1Incorporation: The inhibitory effect of HIDAC on DNA synthesis~ as 

reflected by inhibition of intracellular eH]-TdR incorporation, was compared in HL-60/neo 

versus HL-60IBcl-2 cells according to a previously described method (219, 399). Briefly, after 

incubation of HL-60/neo and HL-60IBcI-2 cells with 100 JlM Ara-C for 4 hours, the cells were 

washed and resuspended in fresh medium containing 0.5 JlCi/ml [3H] thymidine (specific 

activity 65.6 Ci/mmoI, Moravek Biochemicals, Brea, CA). The cells were then incubated at 

37°C with 50/0 CO2, 1 x 106 cells were incubated for various time intervals, then centrifuged and 

the cell pellets resuspended in cold 100/0 trichloroacetic acid and stored overnight at 4°C. The 

cells were again centrifuged, resuspended in cold 100/0 TeA, and incubated for an additional 

hour on ice. After centrifugation, the cells were resuspended in 50/0 TCA, and incubated at 90°C 

for 30 minutes to extract DNA. The cells were again centrifuged, supernatants transferred into 

scintillation vials, and radioactive [3H] signal was counted in a Beckman scintillation counter 

(Columbia, MD). Amount of [3H] thymidine incorporated was expressed as cpm per million 

cells. 
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-Alkaline ElutioQ. Alkaline elution was performed at different time points after Ara-C 

treatment exactly as described in Chapter Three. 

• Semi-Quantitative Polymerase Chain Reaction fur Amplification ru C-"lVC relative 12 t£A 

from HL-60/neo and HL-60/Bcl-2 Genomic DNA Templates after Ara-C Treatment: HL-

60/neo and HL-60IBcl-2 cells were exposed to 100 JlM Ara-C for 4 hours, washed with warm 

sterile PBS, resuspended in fresh drug-free 1 X RPMI media, and incubated for various intervals. 

Alternatively, as positive controls for DNA damage, HL-60/neo and HL-60IBcl-2 cells in 6-well 

plates (Costar) \vere gently shaken on a rotating platform and irradiated with 20 11m2 (253.7nm) 

ultraviolet light for 10 minutes under a sterile culture hood using a germicidal lamp (Forma 

Scientific Biological Safety Cabinet, Lilburn, GA). This dosage of UV -irradiation induced 

internucleosomal DNA fragmentation and reduction of cell viability by trypan blue dye 

exclusion in HL-60/neo cells but not in HL-60IBcl-2 cells, and was similar to dosages used by 

~1artin et al. (400) and Islas and Hanawalt (401 ). 

Genomic DNA was extracted from HL-60/neo and HL-60IBcl-2 cells at various time points 

after Ara-C treatment or UV-irradiation as described previously in Chapter Three. 1 J..lg genomic 

DNA from each condition was used for polymerase chain reaction with 150 J..lM deoxynucleotide 

mix, 50 pmols of the appropriate primers, 1.5 mM MgCl2 and 2.5 U AmpliTaq DNA , 

polymerase (Perkin Elmer Cetus Corporation, Branchburg, NJ). For some experiments, 20 

J.lCi/ml a 32P-dCTP (specific activity 3000 Cilmmol, leN Biochemicals, Costa Mesa, CA), was 

included. For amplification of a 358-bp c-myc product from the sequence of exon III, the 

following peR primers were used, as described by Harlow and Stewart (402): 

5' (+, sense) primer: 5' -AAGGTCAGAGTCTGGATCAC - 3' 

3' (-, antisense) primer: 5' -TAACTACCTTGGGGGCCTTT - 3' 

For amplification of a 174-bp tPA product, the following peR primers were used: 

5' (+ , sense) primer: 5' - GCCACCTGCGGCCTGAGACA -3' 

3' (+, antisense) primer: 5' - AGAGAGAATCCAGCAGGAGC - 3' 
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Reactions were overlaid with 50 JlI mineral oil prior to peR. The following program was 

optimized for co-amplification of both products in a DNA Thermal Cycler (Model 480, Perkin 

Elmer, Branchburg, NJ): initial denaturation at 94°C for 3 minutes; denaturation at 94°C for 1 

minute, annealing at 60°C for 1 minute, extension at 72°C for 2 minutes, for 26 cycles; final 

extension at 72°C for 5 minutes. Furthermore, the addition of the tPA primers was delayed until 

3 cycles after the start of the PCR amplification with the c-myc primers, as used by Rinaudo et 

al. (403) and suggested by Kinoshita et al. (404). This was done in order to assure that the tP A 

and c-myc primers do not interfere with each other and allow greater c-myc amplification than 

could be obtained with simultaneous addition of both sets of primers. After PCR, mineral oil 

was removed by extraction with chloroform. 

Radioactive peR products were electrophoresed in standard I.S-mm-thickness non­

denaturing 8% polyacrylamide gels (Gel-Mix 8, GIBCOIBRL, Grand Island, NY). Dried gels 

were exposed overnight to Molecular Dynamics Phosphorimager cassette, and the bands 

quantitated using the ImageQuant program. Non-radioactive PCR products were 

electrophoresed in 3.0% agarose/ I X T AE gels, stained with ethidium bromide, photographed 

utilizing UV transillumination, and the bands quantitated by horizontal scanning densitometry of 

the film negatives, by acquisition into Adobe Photoshop and utilizing NIH Image Version 1.57 

programs (Macintosh). Ratios of c-myc amplification to tPA reference amplification were 

calculated and compared between samples. 

Ara-C- and UV-induced lesion frequency in the c-myc gene in genomic DNA templates for 

each PCR product in each sample was calculated as described by Kalinowski et al. (405): 

intensity of amplification in 
lesion frequency (s) = -In drug-treated sample 

intensity of amplification in 
untreated control sample 

eEnrichment ru S Phase HL-60/neo and HL-60/Bcl-2 ~ ~ Centrifugal Elutriation: S 

phase HL-60/neo and HL-60IBcl-2 cells were collected by centrifugal elutriation using a 

Beckman rotor and elutriation apparatus (Beckman Instruments, Columbia, MD). Based on the 

size of S phase cells, as compared to smaller G t phase cells and larger O2 phase cells, S phase 

cells were obtained when PBS was washed over the cells at a previously optimized flow rate 

during centrifugation. This physical separation of cells is optimum for the purpose of this 

project in that synchronization of cells in S phase does not utilize thymidine or aphidicolin 
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treatments which may themselves cause DNA breaks and/or apoptosis in HL-60 cells. 500 x 

106 of each of logarithmically growing HL-60/neo and HL-60IBcl-2 cells were sequentially 

loaded into the rotor by pumping a cell suspension through attached tubing at an initial flow rate 

of 8 ml/min. The flow rate was then increased gradually by increments of 2 ml/min until S phase 

ceJ]s could be specifically collected when the flow rate reached 16 rnllrnin. The cell cycle status 

of this collected fraction was confirmed as S phase by propidium iodide staining and flow 

cytornetric analysis for DNA content. 

.Bromodeoxyuridine Incorporation and DNA Analysis .Ill Flow Cytometry S phase HL-

60/neo and HL-60/Bcl-2 cells collected by centrifugal centrifugation were exposed to 100 JlM 

Ara-C for 4 hours, washed and resuspended in fresh medium containing 10 JlM 

bromodeoxyuridine (BrdU, Sigma Chemical Co., St. Louis, MO). The Ara-C-treated cells were 

incubated at 37°C for several hours, and BrdU was allowed to incorporate into DNA. After 

various time intervals,S x 106 cells from each condition were fixed in 70% ethanol overnight at 

-20°C. Thermal denaturation of the DNA at low ionic strength to promote availability of the 

BrdU sites to the anti-BrdU antibody, as well as antibody staining, were performed by modifying 

previously described methods (406-409). After centrifugation the cells were washed in 

phosphate-buffered saline (PBS), recentrifuged, resuspended in 0.5 Jlg/ml RNase AlPBS and 

incubated in a 37°C water bath for 30 minutes. The cells were then centrifuged, washed with 

PBS, resuspended in 0.1 M HCI/0.5% Triton X-I 00 in PBS, and incubated for 10 minutes on ice. 

After recentrifugation and washing in PBS, the cells were resuspended in distilled water and 

placed in a water bath at 95°C for 10 minutes. The cells were subsequently placed on ice for 10 

minutes. After centrifugation and washing in PBS, the cell pellets were resuspended in 150 JlI of 

mouse monoclonal anti-BrdU antibody (DAKO Corporation, Carpinteria, Calif.) (1: 100 dilution 

in 0.5% Tween-20/5% FBSIPBS), and stained for 30 minutes at room temperature. The cells 

were then washed with 0.5% Tween-20IPBS, recentrifuged, and resuspended in 150 JlI goat-anti­

mouse fluorescein-isothiocyanate (FITC)-conjugated (Fab')2 antibody fragment (DAKO 

Corporation, Carpinteria, Calif.) (1 :30 dilution in 0.5% Tween-20/5% FBSIPBS). The cells were 

again washed with 0.5% Tween-20IPBS, recentrifuged, and subsequently resuspended in 10 

Jlg/m I propidium iodide solution in PBS. Flow cytometry was performed using a 488-nm 

excitation with 514-nm band-pass filter for fluorescein and a 600-nm long-pass filter for 

propidium iodide. 
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.Statistical analysis. Statistical analyses including unpaired t-test were perfonned as described 

in Chapters Three and Four. 

Results: 

• rJ.H]-thymidine incorporation into DNA was measured in control and Ara-C treated HL-

60/neo and HL-60IBcl-2 cells as a reflection of total DNA synthesis following treatment with 

1 00 ~M Ara-C treatment for 4 hours. Figure 28 shows that equivalent and increasing amounts 
3 

of [ H]-thymidine were incorporated into untreated HL-60/neo as well as HL-60IBcl-2 cells over 

24 hours. Treatment with 1 00 ~M Ara-C inhibited eH]-TdR incorporation in both HL-60/neo 

versus HL-60IBcl-2 cells to an equivalent extent immediately following Ara-C treatment (Figure 

28). In addition, Figure 28 shows that although HIDAC treatment vastly inhibited eH]-T dR 

incorporation in both cell lines, there was a significant difference in the recovery of eH]-TdR 

incorporation at 24 hours following Ara-C treatment in HL-60IBcl-2 as compared to HL-60/neo 

cells. Even when normalized for the percentage of cells remaining viable (using data presented 

for cell viability in Chapter IV, Tables VIII and IX), the amount of eH]-thymidine by 24 

hours after Ara-C treatment was significantly higher in HL-60IBcl-2 cells than in HL-60/neo 

cells (data not shown). These results demonstrate initially, that HIDAC-induced inhibition of 

DNA synthesis is not affected by overexpression of Bcl-2 in AML cells. Therefore, by 

abrogating HIDAC-induced apoptotic cell death, high intracellular levels of Bcl-2 convert 

HIDAC from a cytocidal to merely a cytostatic antileukemic drug (98). However, the higher 

amount of eH]-TdR incorporation in HL-60/Bcl-2 cells at 24 hours after HIDAC treatment as 

compared to that of HL-60/neo cells (Figure 29 and data in Table XVII) is a finding worthy of 

further explanation. 

• Alkalipe Elution: Analysis Df sustained damage !!YH ~. 

To determine the extent to which Ara-C-induced DNA strand breaks persisted in HL-

60/neo versus HL-60IBcl-2 clonal population B cells, over time, alkaline elution was performed 

immediately following, 4 and 24 hours after HL-60/neo and HL-60IBcl-2 cells were exposed to 
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100JlM Ara-C for 4 hours. The alkaline elution profiles were analyzed in order to test the 

hypothesis that after Ara-C treatment, if greater amounts or rates of repair take place in HL-

601Bcl-2 versus HL-60/neo cells, this would be evident by a reduction in the elution profile of 

DNA from HL-60IBcl-2 cells at various time points after Ara-C treatment. Figure 30 shows that 

as time progressed after HIDAC treatment, both HL-60/neo and HL-60IBcl-2 cells sustained 

equivalent Ara-C-induced DNA strand damage, and increased amounts of Ara-C-induced DNA 

fragments were detected in both cell types immediately after, as well as 4 hours following Ara-C 

treatment. Ara-C-induced DNA strand breaks were not significantly different (p > 0.05) in HL-

60/8cl-2 cells as compared to HL-60/neo cells, by virtue of equivalent slopes of the DNA elution 

curves, and the total amounts of alkali elutable DNA collected from beginning to end of elution, 

from both HL-60/neo and HL-60IBcl-2 cells immediately following and 4 hours after HlDAC 

treatment (see Tables XVIII and XIX). Furthermore, 100 JlM aphidicolin was added to the 

media in some conditions, and was used as an inhibitor of repair synthesis. The tetracyclid 

diterpinoid aphidicolin is also an inhibitor of DNA polymerase(s), but does not incorporate into 

the DNA strand as Ara-C does (243). It has been previously shown to increase alkaline elution 

profiles in Ara-C damaged HL-60 cells (243), and has been used as an inhibitor of repair 

synthesis in several instances in the literature (392, 410-413). When aphidicolin was added to 

the media as an inhibitor of DNA repair synthesis after removal of Ara-C, the rates of elution 

increased (as compared to that after Ara-C treatment alone) as previously noted (242), but were 

similar in both HL-60/neo and HL-60IBcl-2 cells. Again, a comparison of the slopes of the 

elution curves, as well as the total amount of DNA eluted from the filters from HL-60/neo and 

HL-60IBcl-2 cells showed that they were not dissimilar (see Table XIX for slopes). Although 

percentages of cells undergoing apoptosis were markedly different between the two cell lines 

(see Table XX), this data indicates that Ara-C-induced DNA strand breaks were not significantly 

different 4 hours following Ara-C treatment. They also suggest that the attempted repair of this 

damage may be occurring at similar rates in both cell lines. 

Alkaline elution profiles of DNA from Ara-C-treated HL-60/neo and HL-60IBcl-2 cells 

were again compared 24 hours following Ara-C treatment. Their slopes and the amount of total 

elutable DNA were not significantly different (data not shown). However, when the cells were 

co-cultured for 24 hours with aphidicolin after Ara-C treatment, it first appeared that more DNA 

was eluted overall from HL-60IBcl-2 cells than from HL-60/neo cells when the percentage of 

DNA remaining at 18 hours of elution was subtracted from that remaining at 3 hours of elution 
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(~values). However, this result is deceptive since more apoptosis had occurred in HL-60/neo 

versus HL-60IBcl-2 cells (see Table XX), yielding lower amounts of radioactively-labelled 

DNA from the remaining intact HL-60/neo cells that could be eluted from the filters. Apoptotic 

cells are essentially washed from the filters by the cell lysis technique used prior to elution (see 

Table XX). Loss of lower molecular weight apoptotic DNA fragments at alkaline pH 12.1 may 

be consistent with Ross' demonstration that shorter DNA fragments such as Okazaki fragments 

(described as 100-200-bp in length, ref. 233) are not elutable at pH 12.1 but at pH 11.0 (237) 

(please see description in Introduction, Chapter One). Thus; when using alkaline elution 

buffer at pH 12.1, in oder to avoid discrepancies due to extensive apoptosis, comparison of 

elution curves at earlier time points following drug treatment are more useful in addressing the 

extent to which Ara-C-induced DNA damage persists. 

• Semi-quantitative ~ fur c ... myc 3D.d tPA products. 

An additional technique was implemented to detect differences in Ara-C induced DNA 

damage and repair in HL-60/neo versus HL-60IBcl-2 cells by amplifying sequences of the 

transcriptionally active c-myc gene from genomic DNA of both cell types after Ara-C treatment 

by polymerase chain reaction (peR). The principle for optimizing a quantitative peR assay is 

based on the theory that any lesion in DNA will block amplification of the DNA template by Taq 

polymerase used in the peR (405, 414) or other primer extension assays (415-417). Kalinowski 

et al. demonstrated in L 1210 murine leukemia cells that DNA damage induced by UV irradiation 

or cisplatin correlated with inhibition of amplification of a segment of the transcriptionally active 

dihydrofolate reductase (DHFR) gene, and that repair of template DNA correlated with increased 

amplification and return or reappearance of the DHFR peR product (405). c-myc is also a 

transcriptionally active gene (412). Since HL-60 cells possess high rates of transcription of and 

high levels of c-myc, the analysis of amplification of this proto-oncogene from genomic DNA 

was chosen for these thesis studies in the context of Ara-C-induced DNA damage between HL-

60/neo and HL-60IBcl-2 cells. The assay was made semi-quantitative by adding 1 J..lg of 

genomic DNA to each peR reaction and co-amplifying a sequence of the tissue plasminogen 

activator (tP A) gene, a reference gene which located on the same chromosome 8 as the c-myc 

gene (402). 
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Figure 31 is a DNA dose-response gel which demonstrates that using the conditions 

described in Materials and Methods, peR amplification for both 358-bp c-myc and 174-bp tPA 

products were linear in both cell lines and increased predictably with increased amount of DNA 

added. Figure 32 shows results of semi-quantitative peR for c-myc and (PA co-amplification in 

Ara-C-treated (Panel A) and as positive controls for DNA damage, UV -irradiated (Panel B) HL-

60/neo (lanes 1-5 for each) and HL-60IBcl ... 2 (lanes 6-10 for each) cells at various time intervals 

after DNA damage. Panel A demonstrates that in both HL-60/neo and HL-60IBcl-2 cells, as 

compared to amplification of 358-bp c-myc and 174-bp tPA products in untreated cells (lanes 1 

and 6, respectively), that HIDAC treatment resulted in decreased intensity of peR amplification 

of the c-myc product in genomic DNA relative to tPA immediately following Ara-C treatment 

(lanes 2 and 7). However, by this assay, the intensity of amplification of the peR products was 

recovered and returned to at least that of control levels in both cell lines at 4 hours, and remained 

at 24 and 48 hours following Ara-C treatment (lanes 3, 4, 5 for HL-60/neo cells, and lanes 8, 9, 

10 for HL-60IBcl-2 cells, respectively). Similarly, to demonstrate the detection of DNA damage 

by this technique using another genotoxic source, genomic DNA from UV -irradiated HL-60/neo 

or HL-60IBcl-2 cells as positive controls were subjected to the same peR conditions. 

Diminished intensity of amplification of c-myc peR products relative to (PA is also 

demonstrated in Panel B in both cell lines immediately following UV -irradiation (lanes 2 and 7 

for HL-60/neo and HL-60IBcl~2 cells, respectively). This disappearance of the c-myc product 

was prolonged 4 and 8 hours after UV -irradiation (lanes 3 and 8, 4 and 9), and recovered by 24 

hours (lanes 5 and 10) in both cell lines. Figure 30 also includes graphical representations of the 

numerical calculations presented in Table XXI for each set of peR experiments in both HL-

60/neo and HL-60IBcl-2 cells. The graphs demonstrate the return of the lesion frequency value 

toward zero, suggesting that repair of the damage incurred to the genomic DNA templates used 

for peR takes place. The graphs further suggest that repair and recovery occur to equivalent 

extents in both ce II lines. 

• BrdU incorporation 1lIUIllim cytometry 

In order to further examine the potential for increased repair in HL-60IBcl-2 cells with 

increased survival capacity, a flow cytometric method was optimized to measure unscheduled 

DNA synthesis as a reflection of ongoing repair processes in HL-60/neo versus HL-60fBcl-2 

cells after Ara-C treatment. The technique of analyzing Bromodeoxyuridine (BrdU) 
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incorporation into cells in phases of the cell cycle other than S (the synthesis or scheduled 

replication phase) for the detection of DNA repair by flow cytometry was developed by Selden 

et al. as an improvement over existing techniques for measuring unscheduled DNA synthesis 

(417). In their study, human fibroblasts were originally irradiated with UV or incubated with 

various mutagens, and then pulsed with the thymidine analog 5-bromodeoxyuridine (BrdU). The 

cells were then labelled with both a fluorescein-isothiocyanate (FITC)-conjugated antibody to 

BrdU, as well as with propidium iodide for DNA content (418, 419). When the cells were 

subjected to flow cytometry and their cell cycle status determined, it was demonstrated that 

increases in BrdU intensity in cells outside of S phase were indicative of unscheduled DNA 

synthesis associated with repair synthesis. Additional studies with four direct-acting mutagens 

yielded consistent results to lend further credence to the use of this technique for the detection of 

UDS (418). 

In Chapters Three and Four, it was demonstrated that high p26Bcl-2 levels confer upon 

HL-60 cells a greater survival advantage after Ara-C treatment. In order to provide an 

explanation for the increased survival of HL-60/Bcl-2 cells, this flow cytometric technique \vas 

optimized and applied to synchronized HL-60/neo and HL-60/Bcl-2 cells incorporation BrdU for 

various time intervals after Ara-C treatment. Figure 33 shows that after centrifugal elutriation, 

the fourth fraction of either HL-60/neo or HL-60IBcl-2 cells collected at 16 mllmin were indeed 

enriched for S-phase cells: up to 94.9% S-phase cells in the elutriated HL-60IBcl-2 population, 

as compared to approximately 45.80/0 of cells in S-phase in the total HL-60/neo population or 

48.20/0 cells in S-phase of the total HL-60/Bcl-2 population loaded onto the elutriator (average 

percentages are derived from Elite Multicycle Software analysis). These fractions collected were 

therefore utilized for further studies. This enrichment was performed in order to ensure that the 

majority of cells studied would indeed be affected by S-phase-specific Ara-C treatment, and their 

eventual progression into G2 phase could be monitored flow cytometrically while comparing 

BrdU incorporation into cells in these phases. 

Figure 34 shows histograms and graphs generated by flow cytometry software which 

illustrate the analysis of BrrlU incorporation in various phases of the cell cycle. The left panels 

A and C of Figure 34 illustrate "horseshoe" patterns of BrdU incorporation throughout the cell 

cycle in untreated elutriated HL-60/neo or HL-60IBcl-2 cells pulsed with 10 IlM BrdU for 4 

hours, with high levels of BrdU incorporation in S phase cells ("scheduled" or replicative 



www.manaraa.com

169 

synthesis), and low levels in non-S-phase cells ("unscheduled" or repair synthesis). Each top 

histogram is followed underneath by a graphic representation illustrating that a large percentage 

of untreated cells exhibit high BrdU incorporation, and correspond to actively synthesizing S­

phase cells. Much lower incorporation of BrdU occurs in untreated non-S-phase cells. Windows 

were drawn around particles corresponding to cells in each phase of the cell cycle, and the mean 

fluorescence intensity of BrdU incorporation for each window analyzed accordingly. The right 

panels Band 0 of Figure 34 illustrate that when freshly elutriated HL-60/neo or HL-60IBcl-2 s­
phase cells are treated with 100 J.1M Ara-C for 4 hours, then washed and pulsed with 10 J-lM 

BrdU for 4 hours, the intensity of BrdU incorporation in S-phase cells is vastly decreased in both 

Ara-C-treated HL-60/neo and HL-60/Bcl-2 cells as compared with elutriated and untreated HL-

60/neo and HL-60IBcl-2 cells. The graphic representation underneath each histogram on the 

right-hand panel Band D of Figure 34 further illustrate that in both elutriated HL-60/neo and 

HL-60IBcl-2 cells treated with Ara-C, the majority of cells analyzed exhibit only a low intensity 

of BrdU fluorescence. 

Table XXII shows quantitation of the mean fluorescence intensity for BrdU incorporation 

in the cell-cycle-phase windo\vs drawn consistently for each sample analyzed by flow cytometry. 

This table also illustrates that the amount of BrdU incorporation in Ara-C-treated S-phase HL-

60/neo or HL-60IBcl-2 cells is significantly lower than that in untreated "control" S-phase HL-

60/neo or HL-60fBcl-2 cells. This table specifically illustrates that mean fluorescence intensity 

of BrdU incorporation is not significantly different (p > 0.05) in S-phase HL-60/neo or HL-

601Bcl-2 cells, or most importantly, in non-S-phase (0) + O2) HL-60/neo or HL-60IBcl-2 cells 

distinguished by flow cytometry. It was hypothesized that any increases in BrdU intensity 

detected in non-S-phase HL-60/Bcl-2 cells over HL-60/neo cells would indicate an increase in 

unscheduled DNA synthesis promoted by Bcl-2 overexpression. When HL-60/neo and HL-

601Bcl-2 cells continuously pulsed with BrdU for 12 and 24 hours after Ara-C treatment were 

also analyzed, it was consistently found that BrdU incorporation in non-S-phase cells was also 

not significantly different in HL-60/neo as compared to HL-60IBcl-2 cells, reflecting no 

appreciable difference in unscheduled DNA synthesis (or repair synthesis) between the two cell 

lines. 
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n· · ISCUSSlon: 

The cytocidal activity of HIDAC against A\1L cells is we)) documented to be responsible 

for its clinical efficacy in relapsed AML follo\ving treatment with conventional doses of Ara-C 

(335-339). Ara-C is also known to be a potent inhibitor of DNA synthesis (223), The results in 

this thesis demonstrate that although overexpression of Bcl-2 in HL-60IBcl-2 cells abrogates the 

cytocidal effects of HIDAC, as reflected by its inhibition of HIDAC-induced apoptosis, it does 

not significantly affect HIDAC-mediated DNA synthesis inhibition (Figure 28). Thus in the 

context of Bcl-2 overexpression in ANtL cells, these findings show that HIDAC may be acting 

only as a cytostatic anti-AML drug (98). The eventual recovery of HIDAC-induced DNA 

synthesis inhibition in Bcl-2 overexpressing AML cells which escape apoptotic cell death 

may be a mechanism underlying clinical relapse in AML despite initial growth inhibitory 

effects of HIDAC. The increased level of eH]-T dR incorporation in HL-60IBcl-2 cells 24 hours 

after Ara-C treatment as compared to that seen in HL-60/neo cells (see Figure 29) therefore 

prompted the subsequent studies presented in this chapter examining the potential for repair of 

Ara-C-induced DNA damage in HL-60/Bcl-2 cells as compared to HL-60/neo cells. As 

consistently demonstrated in this thesis~ Ara-C induced much greater apoptosis and inhibition of 

viability in HL-60/neo cells than in HL-60IBcl-2 cells. When the amounts of eH]-TdR 

incorporation in both HL-60/neo and HL-60IBcl-2 cells after Ara-C treatment are normalized for 

the percentage of viable non-apoptotic cells remaining after Ara-C treatment (not shown), based 

on data from flow cytometric analyses and MTT assays presented in Chapters Three and Four, 

the resultant eH] TdR incorporation levels are still significantly higher in HL-601 Bcl-2 cells as 

compared to HL-60/neo cells. These data are consistent with Miyashita and Reed's findings, 

where 6971Bcl-2 cells show slightly higher eH]-TdR incorporation after drug treatment than 

697/neo cells (98), but this difference was not further explained. These data indicate that Bcl-2 

promotes greater cell viability, and possibly suggests higher capacity for recovery of DNA 

synthesis after Ara-C treatment. The contribution to the higher eH] signal in TeA-extracted 

DNA from HL-60IBcl-2 cells after HIDAC may be due to the incorporation activity in a higher 

number of surviving cells, however. Whether or not this increase in eH]-TdR incorporation is 

due to increase in recovery of DNA synthesis by repair of Ara-C-induced DNA damage was then 

further assessed. Because of a paucity of techniques in the DNA repair literature for direct 
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evidence of repair of Ara-C-induced DNA damage, three indirect techniques for indications of 

repair were utilized. 

Alkaline elution analysis for the persistence of Ara~C-induced DNA strand breaks over 

time, as well as for the potential effect of inhibition of repair synthesis by DNA polymerase­

specific aphidicolin, also showed no conclusive evidence for difference in DNA profiles between 

Ara-C-treated HL-60/neo and HL-60IBcl-2 cells up to 24 hours after Ara-C treatment. If it is 

hypothesized Bcl-2 overexpression that allows or causes increased repair of Ara-C-induced DNA 

strand breaks, it would be expected that the slopes of the elution curves from DNA from HL-

60/Bcl-2 cells would be smaller in degree than those from DNA from HL-60/neo cells at several 

time points following Ara-C removal, indicating repair of the damage. In addition, it was 

hypothesized that if greater rates of repair synthesis occur in cells overexpressing Bcl-2, the 

presence of aphidicolin would cause less inhibition of active DNA polymerase activity, resulting 

in decreased elutable DNA from HL-60IBcl~2 cells treated with HIDAC followed by aphidicolin, 

as compared with HL-60/neo cells. This also assumes that the process(es) of repair synthesis of 

Ara-C-induced DNA damage utilizes the DNA polymerase(s) affected by aphidicolin as its 

primary element(s). Since no differences were found in elution profiles of both cell lines after 

Ara-C treatment, and in the presence or absence of aphidicolin, these data offer no conclusive 

evidence that Bcl-2 overexpression confers upon HL-60 cells a greater potential for removal of 

Ara-C-induced DNA damage by the alkaline elution assay. Notably, the Ara-C-induced DNA 

damage, as detected by alkaline elution, persists up to 24 hours following Ara-C treatment in 

both HL-60/neo and HL-60IBcl-2 cells, shown by greater percentage of elutable DNA fragments 

at 24 hours after Ara-C treatment as compared with previous time points (data not shown). The 

recovery of the integrity of damaged DNA from HL-60/neo or HL-60IBcl-2 cells is thus not 

identified at these time points. It is further surmised that if the study was extended up to 48 

hours after Ara-C treatment, the DNA profiles in both cell lines would demonstrate decreased 

slopes as more surviving cells recover from Ara-C-induced DNA damage. This has been 

demonstrated by Walton et al. (102) and Kamesaki et al. (103) that as nitrogen mustard- and 

etoposide-induced DNA damage, respectively, is repaired (to equivalent extents in cells which 

overexpress Bcl-2 as compared with parental cells), alkaline elution profiles over time are 

reduced, and less damaged DNA is eluted from the filters over time. 
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By a different assay, PeR-amplified c-myc relative to tPA products were shown to recover 

at equivalent rates over time after Ara-C-induced damage to genomic DNA templates in both 

HL-60/neo and HL-60/Bcl-2 cells. Repair of the actively transcribed c-myc gene in HL-60 cells 

is described as proficient (401), and this is potentially reflected in these data presented here in 

HL-60/neo and HL-60IBcl-2 cells. It was noted, however, that the c-myc PCR products do not 

completely disappear initially in DNA of Ara-treated cells as do the DHFR products analyzed in 

UV-treated LI2l0 cells in Kalinowski's study, or even to the extent as the UV-irradiated I-rr,-

60/neo and HL-60fBcl-2 cells used as positive controls in this Chapter. This is possibly due to 

the different types of DNA damage in each scenario. UV irradiation can produce single-strand 

breaks by virtue of forming UV photodimers, a structural lesion which severely impairs further 

extension from the altered DNA template (405). The potential impasse by the altered base Ara-C 

may not be as severe, since Ross and others have demonstrated that polymerization may still be 

able to occur, albeit much more slowly, from the Ara-C residue (236-237). In addition, the 

probability of detection of a DNA lesion into the genomic template is proportional to the size of 

the gene product amplified and analyzed by peR. While smaller products are more efficiently 

amplified by Taq polymerase used in peR than larger segments (420, 421), the smaller the 

product, the less damage may be detected in that region. While c-myc amplification intensity 

decreased after exposure to HIDAC in both HL-60/neo and HL-60IBcl-2 cells, the 174-bp tPA 

product showed little change in amplification, most likely because of its size. Jennerwein and 

Eastman also examined the feasibility of detecting DNA damage in peR products of various 

sizes. They found that bulky cisplatin-induced DNA adducts blocked amplification of various 

sequences of the hamster adenosine phosphoribosyltransferase gene in CHO cells to a significant 

extent in a 2-kbp fragment, to a moderate extent in a 750-bp fragment, and not at all in a lS0-bp 

fragment (414). They concluded that smal1er peR fragments may be used in this context as 

references to normalize data for variations between samples (414). These examples may provide 

explanations as to why the c-myc and tP A products do not completely disappear when DNA from 

Ara-C- or UV -treated HL-60/neo and HL-60IBcl-2 cells is amplified. It is notable, however, that 

the recovery of amplification of the c-myc product relative to the tPA product occurs in both cell 

lines, and shows an indication of equivalent rates of repair and/or recovery. 

Furthermore, potential for repair synthesis was investigated by examInIng BrdU 

incorporation into HL-60/neo and HL-60IBcl-2 cells elutriated to enrich for S-phase cells and 
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treated with Ara-C. Subsequent flow cytometry demonstrated that the amounts of BrdU 

incorporation after Ara-C treatment in non-S-phase cells were similar in both cell lines, 

regardless of the level of Bcl-2 expression. Therefore, despite Bcl-2-mediated blockade of 

. apoptosis and Bcl-2-mediated enhancement of cell viability, rates of unscheduled DNA synthesis 

were not affected by the presence of higher intracellular levels of Bcl-2. In comparing the 

equivalent incorporation of BrdU in S- and non-S-phase cells as an indication of replicative and 

repair synthesis with the incorporation of eH]-TdR in the total HL-60/neo and HL-60IBcl-2 

populations after Ara-C treatment, it is concluded that increased levels of eH] thymidine 

incorporation may merely reflect contributions from a higher number of viable cells present in 

the population of HL-60 cells overexpressing Bcl-2. 

If any indication of increased unscheduled DNA synthesis was observed in these 

experiments, increased repair of Ara-C-induced DNA damage in cells which overexpress 

p26Bcl-2 could be confinned by assessment of sedimentation in isopyknic cesium chloride 

density gradients and measuring the buoyant density of BrdU-Iabelled DNA strands undergoing 

repair after HIDAC treatment and compared with BrdU-Iabelled DNA strands undergoing 

semiconservative synthesis (368, 401, 422). Furthennore, the effect of Bcl-2 on specific incision, 

polymerase, or ligation activities attributed to the removal and repair of Ara-C-induced DNA 

lesions would need to be investigated in order to be able to conclude whether increased repair is 

a direct result or a secondary effect of Bcl-2 overexpression. These latter assays have not been 

widely established in the literature. However, these data in this dissertation indicate no 

additional capacity for increased repair synthesis in cells which overexpress Bcl-2, and are 

consistent with previously published reports which found no effect of Bcl-2 overexpression on 

the rate of repair of etoposide- (VP-16-) induced single-strand breaks (103), or on nitrogen 

mustard- or camptothecin-induced DNA damage (101). While it is therefore assumed that cells 

with higher Bcl-2 levels are as capable of repairing Ara-C-induced DNA damage as cells with 

lower Bcl-2 levels, as evidenced by the peR studies presented here, and by flow cytometric 

evidence of equivalent recovery of cell cycling through G21M-phase after Ara-C treatment (data 

not snown), it is concluded that cells which possess higher Bcl-2 levels have no greater repair 

capacity than cells with lower Bcl-2 levels. The data presented in this chapter suggest that 

regardless of the ability of HL-60 cells with disparate levels of p26Bcl-2 expression to repair 

DNA damage, this damage may nevertheless be a critical signal to activate a cellular pathway 
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leading to apoptosis. If the signalling pathway itself is blocked by Bcl-2, only apoptosis is 

inhibited or lessened. It is therefore important to establish or identify how Bcl-2 inhibits the 

conversion of early DNA damage into lethal DNA damage in order to maintain cell viability 

without the contribution of increased DNA repair. The proposed mechanism(s) of action of 

Bcl-2, including the antioxidant effect (120, 121)., the interference with Ca2
+ flux (10), and with 

nuclear protein trafficking associated with apoptosis (142, 144), have been discussed in 

Chapters One and Three of this dissertation. These potential mechanism(s) will be expanded 

upon in the next chapter, as they specifically apply to the inhibition of Ara-C-induced apoptosis. 
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FIGURE LEGENDS: 

Figure 28: [3UI-thymidine incorporation in HL-60/neo and HL-60IBcl-2 cells. HL-60/neo 
and HL-60/Bcl-2 cells were either untreated or exposed to 100 J.lM Ara-C (HIDAC) for 4 hours, 
then -w"ashed resuspended in drug-free media containing 0.5 JlCi/ml eH] thymidine. At various 
time points, 1 to 24 hours, I x 106 cells were collected and DNA extracted with TeA, as 
described in the method in this chapter. eH] thymidine incorporation was expressed as cpm per 
million cells, and bars in the figure (top and bottom panel) reflect the means ± S.E.M. for three 
experiments, tabulated in Table XVII. 

Figure 29: [JH]-thymidine incorporation in HL-60/neo and HL-60IBcl-2 cells after Ara-C 
treatment. Enlargement of bars in Figure 24 representing eH] thymidine incorporation in HL-
60/neo or HL-60/Bcl-2 cells at various time points after Ara-C treatment only, as described in 
the Figure 28 legend. Bars reflect means ± S.E.M. for three experiments, tabulated in Table 
XVII. 

Figure 30: Alkaline Elution profiles for HL-60/neo (top) and HL-60/Bcl-2 (bottom) cells 
after Ara-C treatment are expressed as the percent DNA remaining on the polycarbonate 
fi lters, as described in Chapter Three methods. Data points on the curves represent the means of 
eluted DNA in three-hourly fractions collected over 18 hours (mean of three experiments, with 
standard error of mean [S.E.M.] tabulated in Table XVII). The results demonstrate that there is 
no significant difference in the amounts or the slope of the elution of DNA in Ara-C-treated HL-
60/neo versus HL-60IBcl-2 cells (please see data in Table XIX). 

Figure 31: Dose-response curves for amplification of c-mycltPA products by PCR. Panel A 
shows intensity of amplification of the 358-bp c-myc peR product for given amounts of genomic 
DNA from HL-60/neo or HL-60IBcl-2 cells added to the peR reactions and amplified with the 
conditions listed in the text. The above graph is a representation of the intensity value assigned 
to radioactive c-myc bands in the dried polyacrylamide gel in Panel B, quantitated by a 
Phosphorimager. Panel C is a similar graphic representation of the intensity of amplification of 
the 174-bp ,PA peR product for given amounts of genomic DNA from HL-60/neo or HL-60IBcl-
2 cells, tabulated from the intensity value assigned to the radioactive tPA bands shown in Panel 
B. The intensity values demonstrate a predictable and linear increase in the amount of peR 
products generated by the described cycle number, durations, and temperatures, as the amount of 
DNA added is also increased to 1000 ng (1 J.lg). Gel is representative of 2 experiments, each 
with similar results. 

Figure 32: Determination of Ara-C- or UV -induced lesion frequency in the c-myc gene 
relative to tPA) by PCR of genomic DNA templates from HL-60/neo and HL-60IBcl-2 cells. 
Genomic DNA was extracted from HL-60/neo or HL-60IBcl-2 cells at various time points after 
Ara-C treatment or UV-irradiation (described in Materials and Methods), as described in Chapter 
Three. c-myc and tPA peR products were co-amplified from 1 Jlg of each genomic DNA sample 
using the conditions and parameters listed Materials and Methods. 10 J.l1 of each peR reaction 
was then electrophoresed in 2.0% agarose/lX TAE gels, stained with ethidium bromide, and 
photographed utilizing UV transillumination. 

Panel A represents peR co-amplification of 358-bp c-myc and 174-bp (PA sequences in genomic 
DNA from HL-60/neo (lanes 1-5) and HL-60/Bcl-2 cells (lanes 6-10) immediately following 
HIDAC treatment (lanes 2,7) as well as 4, 24, and 48 hours after HIDAC treatment (lanes 3 and 
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8, 4 and 9, 5 and 10, respectively), as compared to untreated controls (lanes 1,6). M represents 
123-bp ladder as the electrophoresis marker. 

Genomic DNA from UV-irradiated cells was used as positive controls for DNA damage for this 
technique. Panel B represents the same technique performed on genomic DNA templates 
extracted from HL-60/neo (lanes 1-5) and HL-60IBcl-2 (lanes 6-10) immediately following UV­
irradiation (lanes 2,7) as well as 4, 8, and 24 hours following UV -irradiation (lanes 3 and 8, 4 
and 9, 5 and 10, respectively), as compared with un-irradiated control cells (lanes 1,6). 

Intensity of amplification of each band was quantitated by scanning densitometry of the film 
negative, and Ara-C-induced lesion frequency was calculated as described in the text Graphical 
representations of the calculations for c-myc lesion frequency after each DNA damaging 
treatment tabulated in Table XXI are plotted beneath each peR gel. Data represent mean ± 
S.E.M. for n=4 experiments. Gels are also representative of four experiments, each with similar 
results. 

Figure 33: Flow cytometric confirmation of enrichment of HL-60/neo and HL-60IBcl ... 2 
cells for S-phase cells by centrifugal elutriation. For each panel, 2 x 106 HL-60/neo or HL-
601Bcl-2 cells were fixed in ice-cold ethanol in -20°C for 1 hour, washed with PBS, and 
resuspended in 10 IJ.g1ml propidium iodide containing 0.5 Ilglml RNase A before (Panels A and 
C) or after (Panels B and D) centrifugal elutriation and collection of cells eluted during flow of 
PBS through the elutriation chamber at 16 ml/min, as described in the text. Flow cytometry for 
DNA content was performed and percentage of cells in S-phase tabulated with Multicycle 
software. Panels Band D show that cells collected at flow rate 16 ml/min contained the greatest 
number of S-phase HL ... 60/neo or HL-60IBcl-2 cells than other fractions collected by centrifugal 
elutriation, and were subsequently used for BrdU incorporation after Ara-C treatment. 

Figure 34: Flow cytometric analysis of bromodeoxyuridine incorporation in elutriated HL-
60/neo versus HL-60IBcl-2 cells after Ara-C treatment. For each panel, elutriated S-phase 
HL-60/neo (Panels A and B) or HL-60IBcl-2 (Panels C and D) cells were either left untreated 
(Panels A and C) or exposed to 100 J..lM Ara-C (Panels B and D). After 4 hours, cells were 
washed, resuspended in fresh drug-free media and pulsed with 10 J..lM BrdU for at least 4 hours. 
Cell samples fixed in ice-cold 70% ethanol were then processed and double-stained with anti­
BrdU antibody and propidium iodide as described in the text. Flow cytometry was perfonned, 
and generated histogram representation of BrdU intensity in each phase of the cell cycle (top 
square of each panel, with window B = apoptotic/suh-G1 phase; window C = G1 phase; 
window E = S phase; window D = G2 phase), as well as comparison of BrdU intensity per cell 
count (bottom square of each panel). Panels A and C show typical "horseshoe" pattern of high 
BrdU incorporation in S-phase and low BrdU incorporation in non-S-phase untreated HL-60/neo 
and HL-60IBcl-2 cells. Panels Band D demonstrate the inhibition of BrdU incorporation in S 
phase in Ara-C-treated HL-60/neo as well as HL-60IBcl-2 cells, with only the low incorporation 
of BrdU in the remaining non-S-phase cells. 
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Figure 28. 
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Figure 29. 
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IABLEXYU. 

Conditiop: 

Control: 
1 hr 
4 hrs 
8 hrs 

12 hrs 
24 hrs 

rJH]-THYMIDINE INCORPORATION 
IN HL-60/neo VERSUS HL-60IBcl-2 CELLS 

AFTER ARA-C TREATMENT:* 

I~H1 counts ofTCA extracts 
HL-60/neQ; Hk60IBcl-2: 

9652.5 ± 303.7 
36031 ± 936.56 
65813 ± 3414.7 

111783.7 ± 13808.9 
140329.7 ± 14797.8 

8183 ± 876.5 
29845.7 ± 1437.5 

54116 ± 5450.3 
92410.7 ± 2164.9 
134608 ± 19530.2 

Post 100 liM Ara-C: 
1 hr 149 ± 10.5 

334.3 ± 44.3 
540.3 ± 52.9 
861.3 ± 81.9 

207.5 ± 22.6 
709.3 ± 100.1 

1363.7 ± 36.3 
2408.3 ± 139.1 

7845 ± 718.9 

4 hrs 
8 hrs 

12 hrs 
24 hrs 2909 ± 964.4 

179 

* Values represent mean ± S.E.M. for n = 3 experiments. Values obatined in identically treated HL-
60/neo versus HL-60IBcl-2 cells are significantly different (p < 0.05) for post Ara-C samples. 
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Figure 30. 
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TABLE XVIII. 

ALKALINE ELUTION IN 1IL=60/neo VERSUS HL-60/Bcl-2 CELLS:* 

0/0 DNA Remainin2 on Filter: 
Condition: HL-60/neo: HL-60IBcl-2: 

o hrs post Ara-C: 
3 hr fraction 
6 hr fraction 
9 hr fraction 

12 hr fraction 
15 hr fraction 
18 hr fraction 

4 hrs post Ara-C: 
3 hr fraction 
6 hr fraction 
9 hr fraction 

12 hr fraction 
15 hr fraction 
18 hr fraction 

4 hrs post Ara-C, 

92.11 ± 1.49 
86.28 ± 1.71 
81.57 ± 1.96 
76.20 ± 1 .. 34 
69.58 ::: 0.83 
60.98 :: 3.85 

89.46 ± 0.77 
83.56 ± 2.32 
79.89 ± 2.64 
74.17 ± 2 .. 93 
67.33 ± 2.65 
60.63 ± 2.70 

plus 100 llM aphidicolin: 
3 hr fraction 84.04 ± 0.66 
6 hr fraction 74.77 ± 0.80 
9 hr fraction 65.50 ± 0.61 

12 hr fraction 50.68 ± 3.44 
15 hr fraction 40.35 ± 2.42 
18 hr fraction 29.52 ± 2.18 

* Values represent mean ± S.E.M. for n = 4 experiments. 

94.68 ± 0.38 
89.89 ± 0.61 
85.54 ± 1.13 
81.42 ± 0.80 
75.59 ± 0.66 
69.64 ± 0.26 

95.16 ± 1.34 
91.55 ± 1.82 
87.51 ± 2.55 
82 .. 47 ± 3.19 
75.42 ± 3.87 
69 .. 03 ± 4.68 

93.98 ± 1 .. 45 
84.84 ± 2.87 
73.33 ± 5.23 
61.32 ± 6.08 
47.68 ± 6 .. 06 
35.02 ± 4.04 

181 
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TABLE XIX. 

ALKALINE ELUTION IN HL-60/neo VERSUS HL-60IBcl-2 CELLS 
AFTER ARA .. C TREATMENT:** 

HL-60/neo; HL-60/Bcl-2: 

182 

Condition: Slope of Elution Curve: Slope of Elution Curve: 

o hrs post Ara-C 31.13 ± 5.34 

4 hrs post Ara-C 32,,49 ± 1.84 

4 hrs post Ara-C, 54.52 ± 2.68 
plus 100 JlM 
aphidicolin 

-2.06 ± 0.13 

-2.41 ± 0.87 

-3.61 ± 0.12 

31.41 ± 6.39 -1.98 ± 0.18 

29.06 ± 5.17 -2.09 ± 0.58 

58.96 ± 2.89 .. 3.93 ± 0.36 

* ~ (delta) represents the total percentage of DNA eluted from the filter under alkaline conditions 
between the earliest time point (3-hr fraction) and the latest time point (IS-hr fraction), and 
represents the total amount of DNA eluted. 

** y'alues represnt mean ± S.E.M. for n = 4 experiments. Values obtained in identically HL-60/neo 
and HL-60IBcl-2 cells are not significantly different (p > 0.05) for the above listed conditions. 
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TABLE XX. 

ALKALINE ELUTION IN HL-60/neo VERSUS HL-60/BcI-2 CELLS 
AFTER ARA-C TREATMENT:* 

Condition: 

Control 

4 hrs post Ara-C 

4 hrs post Ara-C, 
plus aphidicolin 

24 hrs post Ara-C 

24 hrs post Ara-C 

I. MORPHOLOGIC EVIDENCE OF II. % DNA LYSED FROM FILTERS 
APOPIOSIS IN CELLS USED FOR PRIOR TO ALKALINE ELUTION:* 

ALKALINE ELUTION ASSAY; __ 

BL-60/neo: HL .. 60/Bcl .. 2: HL-60/neo: HL-60IBcl-2: 

2.41 % ± 1.21 0.74% ± 0.47 4.56 ± 1.40 2.65 ± 0.90 

40.51 % ± 5.37 3.600/0 ± 1.83 26.83 ± 3.27 4.43 ± 1.86 

43.04% ± 10.37 11.620/0 ± 3.07 18.56 ± 4.84 5.40 ± 2.53 

46.56% ± 1.36 5.08 % ± 1.03 24.18 ± 5.95 9.59 ± 3.89 

82.93 % ± 10.30 18.90% ± 2.22 59.21 ± 10.99 12.02 ± 2.16 

* Values represent mean ± S.E.M. for n = 4 experiments, and demonstrate that apoptotic cells are 
lysed from filters and may not be included in DNA eluted from filters under alkaline conditions. 

** 010 DNA lysed from filters = Raw lysis counts 
Total counts = lysis + fraction accumulation + NaOH wash 

+ DNA counts on filter 
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TABLE XXI. 

Condition: 

186 

DETERMINATION OF c-mvc LESION FREQUENCY BY PCR 
IN HL-60/neo AND HL-60/Bcl-2 GENOMIC DNA TEMPLATES 

AFTER ARA-C TREATMENT (OR UV-IRRADIATION)* 

lesion frequency = - In c-mvc amplification for treated sample 
c-myc amplification for untreated sample 

HL-60/neo: HL-60IBcl-2: 

I. post Ara-C treatment: 

o hrs 0.0604 ± 0.0248 0.0724 ± 0.0206 

4 hrs -0.0141 ± 0.0104 -0.0134 ± 0.0087 

24 hrs -0.0068 ± 0.0036 -0.0178 ± 0.0101 

48 hrs -0.0494 ± 0.0259 -0.0165 ± 0.0091 

II. post UV-irradiation: 

o hrs 0.0871 ± 0.0288 0.0983 ± 0.0423 

4 hrs 0.0804 ± 0.0267 0.0906 ± 0.0398 

8 hrs 0.0895 ± 0.0295 0.0829 ± 0.0375 

24 hrs -0.0009 ± 0.0290 -0.0590 ± 0.0441 

* Values represent mean ± S.E.M. for n = 4 experiments. 
Values obtained for HL-60/BcI-2 cells are not significantly different (p < 0.05) as compared with identically treated 

HL-60/neo cells (with exception of HL-60/BcI-2 cells 24 hours post UV-irradiation). 
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TABLE XXII. 

FLOW CYTOMETRIC ANALYSIS OF BROMODEOXYURIDINE INCORPORATION 
IN ELUTRIATED HL-6Q/neo VERSUS HL-60/Bcl-2 CELLS 

AFTER ARA-C TREATMENT: * 

I. HL-60/neo CELLS: 

Condition: 

control 4 hrs 

4 hrs post Ara-C 

12 hrs post Ara-C 

24 hrs post Ara-C 

S-phase cells: non-S=phase cells: 
(Gl + G2) 

mean FITC-BrdU: mean FITC-BrdU: 

202.81 ±24.14 16.50 ± 5.27 

5.38 ± 2.57 9.15 ± 4.51 

8.69 ± 2.41 12.37 ± 8.32 

33.75± 15.02 23.46 ± 6.58 

II. HL-60IBcl-2 CELLS: 

Condition: 

control 4 hrs 

4 hrs post Ara-C 

12 h rs post Ara-C 

24 brs post Ara-C 

S-phase cells: "oo-8-phase cells; 
(Gl + G2) 

mean FITC-BrdU: mean FITe-BrdU: 

213.57 ± 53.46 12.64 ± 1.62 

5.56 ± 2.86 9.69 ± 4.70 

6.22 ± 3.02 11.10 ± 7.36 

28.58 ± 23.96 21.22 ± 5 .. 31 

* Values represent mean ± S.E.M. for n :: 4 experiments. 

RATIO: 
S-BrdU: noo-8-BrdU: 

14.88 ± 1.23 

0.60 ± 0.01 

1.04 ± 0.51 

1.73 ± 0.35 

RATIO: 
S-BrdU: non-S-BrdU: 

14.72 ± 2.77 

0.S7 ± 0.02 

0.68 ± 0.18 

1.29 ± 0.68 

Values obtained for identically treated HL-60/neo versus HL-601Bc1-2 cells are not significantly 
different (p > 0.05). 
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CHAPTER VI: MECHANISM(S) OF ACTION OF Bcl-2: 
GENERAL DISCUSSION AND FUTURE STUDIES 

A. IntroductioD; 

In Chapter Three of this dissertation, it was demonstrated that overexpression of Bcl-2 

inhibited Ara-C-induced apoptosis and the concomitant loss of cell viability without affecting the 

early steps of Ara-C metabolism, Ara-C DNA incorporation, and Ara-C-induced DNA strand 

breaks. Studies in Chapter Four showed that the survival advantage and the degree of 

inhibition of apoptosis correlated with the degree of BcI-2 overexpression. Chapter Four also 

demonstrated that cells which survived Ara-C treatment exhibited a transcriptional up-regulation 

of bcl-2 mRNA, as well as increase in p26Bcl-2 levels, regardless of their original endogenous 

level of Bcl-2 expression. Furthermore, these increases in Bcl-2 levels were shown to be 

biologically relevant since surviving HL-60 cells were more resistant to a second exposure of 

Ara-C. In Chapter Five, it was investigated whether the overexpression of Bcl-2 conferred 

survival advantage following Ara-C treatment by virtue of improving the repair of Ara-C­

induced early DNA damage. As noted previously, both the Ara-C-mediated DNA synthesis 

inhibition as well as Ara-C-induced early DNA damage was similar in HL-60/neo and HL-

60/8cl-2 cells. The repair of this DNA damage was compared by several assays, and was found 

to be similar in rate in HL-60/neo versus HL-60IBcl-2 cells. These assays included analysis of 

DNA strand breaks by alkaline elution, assessment of lesion frequency in DNA by PeR-based 

DNA amplification, and flow cytometric determination of unscheduled DNA synthesis by virtue 

of incorporation of Bromodeoxyuridine (BrdU) into non-S-phase cells. The data presented in 

Chapters Three through Five define Ara-C-induced intracellular events into proximal, which lead 

to more distal and lethal events, those that are proximal involving the metabolism of Ara-C and 

its incorporation into and damage of DNA, from those that are distal and related to biochemical 

and morphologic features of apoptotic cell death. The anti-apoptotic effect of Bcl-2 

overexpression results from inhibition of these distal events, and therefore inhibition of a critical 

Hswitchpoint" in intracellular signalling which converts DNA damage into a signal by which the 

progression to apoptosis commences (see Figure 35 for illustration). Exactly what this signal 

includes remains to be elucidated. This chapter will explore several possibilities for Bcl-2 
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mechanism of action, and includes discussion of various gene expressIons and potential 

molecular transducers affected by Ara-C or affected in apoptosis in general. 

Figure 36 highlights several other intracellular effects of Ara-C. Some have been 

associated with apoptosis, while the role of other events mediating or regulating Ara-C-induced 

apoptosis have not been defined. These events have been categorized into two groups in this 

figure: in the first group are early response genes and signal transduction proteins which have 

been described to be induced by Ara-C exposure, and include transcription factor NFK.B~ Hl 

histone~ c-jun~ c-abl, SAP kinase, p34cdc2 kinase (254-259, 265, 268); the second listed group 

refers to alternate targets affected by Ara-CDP choline, and include DAG formation, PKC 

signalling, and ceramide formation, as previously described in Chapter One of this thesis. 

Whether Bcl .. 2-mediated inhibition of Ara-C-induced apoptosis involves interaction with or 

modification of these alternate targets has not been previously addressed. In addition, whether 

Bcl-2 overexpression affects the trafficking or activation of other proteins currently associated 

with the induction of apoptosis in other systems described in the literature, also represents a 

unique set of questions which have not been previously addressed. 

D, Disparate leyels of gene expressions induced in HIDAC-treated HL-60/Bcl-2 cells as 

compared with HIDAC-treated HL-60/neo cells. 

In addition to the expressions of bcl-2-related genes and gene products presented here in 

this thesis, various other gene expressions have also been studied in HL-60IBcl-2 cells as 

compared with HL-60/neo cells in the context of Ara-C-induced apoptosis. Analyses of these 

gene expressions were undertaken in order to address separate questions which might explain 

Bcl-2 function in Bcl-2-mediated blockade of Ara-C-induced apoptosis. 

L c-jun mRNA byperinductioD in HIDAC-treated HL-60/Bcl-2 cells as compared with 

"IDAC-treated Hk60/peo cells: 

c-jun is a member of a family of early response genes which encode for sequence-specific 

bZIP DNA-binding proteins (423). c-Jun can either homodimerize, or heterodimerize with c-Fos 

protein to form the AP-I (activator protein-I) transcription factor involved in the transcriptional 

regulation of genes responsive to phorbol esters or growth factors (424). Therefore, AP-l can 
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modulate the transcription of a variety of genes which may affect cell proliferation and 

differentiation (425). Recent reports have implicated protein kinase C (PKC) activation as a step 

leading to the induction of c-jun in the molecular cascade leading to apoptosis by antileukemic 

drugs which include Ara-C (261, 426). However, it has been recently demonstrated that its role 

in apoptosis may probably be indirect (262). c-jun may play a more critical role in Ara-C­

induced maturation than apoptosis, since U937 cells expressing a mutant c-Jun protein exhibit 

Ara-C-induced apoptosis to an equivalent extent as in parental U937 cells, but are more resistant 

to Ara-C- induced features of maturation (263). 

Figure 35, Panel A, shows hyperinduction (approximately 5-fold) of c-jun mRNA in 

HIDAC-treated HL-60IBcl-2 cells as compared to c-jun mRNA induction in identically treated 

HL-60/neo cells. This effect was also previously demonstrated by Bullock et al. in pre-B 

leukemia 6971Bcl-2 cells treated with HIDAC, as well as mitoxantrone, as compared to levels of 

c-jun mRNA induction in identically-treated 697-neo cells (262). 

If Bcl-2 overexpression increases c-jun induction, it may be worthwhile to explore the 

mechanism by which this hyperinduction occurs, as well as what genes are responsive 

downstream of AP-I as either direct or indirect targets of Bcl-2-mediated protection against Ara­

e-induced apoptosis. c-Jun, as well as c-Fos, are reported to induce the expression of 

metallothionein genes involved in the detoxification of heavy metals, whose promoters contain 

AP-l sites (427). In addition, c-jun/ AP-I activity may either reflect or play a role in the 

oxidative state of a cell. For example, the transcriptional activity of DNA binding of AP-l has 

been reported to be affected by the regulation of reduction-oxidation status of a conserved 

cysteine residue in the DNA-binding domains of both Fos and Jun proteins (428, 429). Meyer et 

al. describe AP-l itself as an antioxidant-responsive factor since DNA binding and 

transactivation by AP-l were induced in HeLa cells following treatment with antioxidants such 

as N-acetyl-L-cysteine, and was suppressed by H20 2 treatment (430). Similarly, intracellular 

glutathione (GSH) levels are also known to regulate Fos/Jun induction (431). In addition, a 

downstream target for this AP-I-mediated activity is the glutathione-S-transferase gene (GST), 

which functions to detoxify mammalian cells and remove toxic compounds such as mutagens 

and carcinogens. Furthermore, as mentioned in the introduction to this thesis, computer analysis 

of the bcl-2 cDNA sequence indicates that several AP-l sites exist downstream of the bcl-2 open 

reading frame, and may reflect sites for the potential posttranscriptional regulation of bcl-2 itself 

if the AP-l protein is also increased and is biologically significant in Bcl-2-overexpressing cells. 
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Because of the regulation of c-junl AP-I by redox and GSH levels, the antioxidant theory of Bcl-

2 mechanism of action seemed an attractive hypothesis which might fit this situation presented in 

this chapter, since Bcl-2 was shown to suppress oxidant-induced apoptosis, scavenge free 

radicals (120), and increase GSH levels (121) in neural cells and in lymphoma cells (122). 

However, Ara-C itself is not known to induce the generation of reactive oxygen species 

(ROS) such as H20 2, superoxide (02-) or hydroxyl radicals (Off), as does y-irradiation, UV 

light, or low concentrations of H20 2 (432). It also remains unclear whether ROS playa universal 

role in the induction of apoptosis. In addition, Ara-C is not among the compounds known to be 

conjugated to thiols and subsequently removed from cells by GSTs (433). It remains yet to be 

confirmed whether Bcl-2 functions in an antioxidant role, either in the context of Ara-C-induced 

apoptosis or universally. As concluded in the Introduction to this dissertation, the increased 

antioxidant properties of cells which overexpress Bcl-2 may only be a secondary effect of Bcl-2-

mediated inhibition of apoptosis and cytotoxicity. 

2. Increased c-mvc mRNA expression in HL-60/Bcl-2 cells: 

As mentioned previously in the introduction of this thesis, c-myc and bcl-2 oncogenes have 

been demonstrated to cooperate in the progression of tumorigenesis and the acquisition of drug 

resistance (89, 108). Bcl-2 overexpression has been demonstrated to block c-myc apoptotic 

function but not its proliferative function (107). Figure 37, Panel B, shows approximately 5-

fold increase in the endogenous level of c-myc in untreated HL-60IBcl-2 cells (lane 3) as 

compared to the endogenous level in untreated HL-60/neo cells (lane 1). In addition, c-myc 

expression decreases in HL-60/neo cells treated with HIDAC for 4 hours (lane 2), consistent 

with studies in the literature (262). This decrease in c-myc expression as a result of HIDAC 

treatment for 4 hours is not as pronounced in HL-60IBcl-2 cells (lane 4), as a result of higher 

endogenous levels. These data represent a new scenario in which delivery of bcl-2 eDNA to and 

overexpression of p26Bcl-2 in HL-60 cells by retroviral-mediated transfection increases, either 

directly or indirectly, c-myc levels, and may affect cell survival and proliferative capacity. Baer 

e/ al. have demonstrated dysregulation in c-myc mRNA in patient-derived AML cells, suggesting 

a possible contribution to the genesis of AML (352). However, whether increase in c-myc levels 

or in c-jun induction is due to Bcl-2 overexpression or due to retroviral-mediated transfection of 

these cells needs to be clarified, since the corroborating experiment recently reported by Bullock 
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et al. utilized 697/neo and 6971Bcl-2 cells also transfected with the same retroviral constructs 

(262). 

High levels of c-jun mRNA have been shown to be expressed in proliferating cells, for 

example, and has also been associated with inhibition of differentiation (425, 434). c-myc 

mRNA levels are also high in proliferating cells (44, 45). These findings suggest that increased 

c-jun and c-myc levels in HIDAC-treated cells overexpressing Bcl-2 may indicate an increase in 

their proliferative ability as compared to that in HL-60/neo cells. However, this has not 

necessarily been observed in culture of the HL-60IBcl-2 cells used in these studies presented in 

this thesis. 

c. Proposal for Bcl-2-mediated blockade of p34~ kipase nuclear trafficking or and/or 

premature activation; and review of other documented mechanisms: 

Recently, Bcl-2 overexpression was demonstrated to block cytoplasmic to nuclear 

trafficking of p53 (144) as well as cell cycle-dependent kinases cdc2 and cdkl (142). Cyclin­

dependent p34cdC2 kinase is a highly regulated serine threonine kinase related to mitosis. It forms 

an active complex with regulatory subunit cyclin B, and its dephosphorylation controls entry of 

cells into mitosis (142, 435-437). The resultant breakdown of the cell membrane and chromatin 

condensation are features of mitosis which are also characteristic of apoptosis (43 8). As 

mentioned in the introduction of this thesis, recent studies have shown that premature activation 

of p34cdC2 kinase precedes the onset of granzyme Boo or taxol-induced apoptosis (143, 269), as 

well as etoposide- or nitrogen mustard-induced apoptosis in HL-60 cells (439). The only study 

which links Ara-C to an effect on p34cdc2 kinase is the recent report that 15 minutes' exposure of 

HL-60 cells to HIDAC causes phosphorylation of p34cdC2 kinase, which reduces its activity 

(268). Whether subsequent dephosphorylation and activation of p34cdC2 kinase occurs after 

a longer exposure to HIDAC, i .. e., 4 hours' exposure, concomitant with the induction of 

apoptosis, has not been additionally examined.. A further important question to address would 

be whether Bcl-2 has the ability to block nuclear trafficking of p34cdc2 kinase or its premature 

activation in the context of Ara-C-induced apoptosis. In regards to p53 trafficking, however, 
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HL-60 cells do not possess p53 expression due to deletions in the p53 gene (286), and therefore 

this examination would be in the context of p53-independent Ara-C-induced apoptosis. 

For completeness, it is also essential to mention two other proposed mechanisms of action 

for Bcl-2 which appear in the literature. These include association with R-ras and Raf-l 

kinase signal transduction proteins (134, 138), and the demonstrated inhibition by Bcl-2 of 

Ca2
+ repartitioning from the endoplasmic reticulum to the mitochondria associated with 

the onset of apoptosis in growth factor-deprived cells (10) or in thapsigargin-treated cells (127). 

Whether these actions are among the mechanism for Bcl-2-mediated blockade of Ara-C-induced 

apoptosis remains to be addressed, given that there is no documentation that Ara-C itself 

causes cbanges in intracellular calcium levels in mediating its cytotoxicity. Ras is also not 

mentioned in the current literature as a specific target or effect of Ara-C treatment, as it is 

associated with taxol treatment, for example (139). While Ara-C can also stimulate MAP kinase, 

its connection to a Ras-related pathway in the context of apoptosis remains to be elucidated, 

especially since Ras may also be involved in similar PKC-dependent and PKC-independent 

path\vays (88). Furthennore, it would also be of interest to study whether Bcl-2 interaction with 

mutated Ras is of functional significance for the signalling of apoptosis in HL-60 cells, for 

example, which harbor N-ras mutations, as described in Chapter Two of this dissertation. The 

interaction of Ras with Bcl-2 may also be dependent on the type of stimulus inducing the signal 

transduction leading to apoptosis. Because Bcl-2 inhibits a final common pathway of apoptosis 

(70, 89-111), its interaction with Ras (and vice versa) may not necessarily be a universal 

characteristic of Bcl-2-mediated inhibition of apoptosis. 

D. Proposal for Bel-2-mediated blockade of protease cascade(s) preceding the onset of 

apQptosis: 

Historically, the biochemical hallmark and endpoint of most forms of apoptosis has been 

universally described in the literature as double-stranded DNA fragmentation. The events 

leading up to and specifically causing this DNA fragmentation remain to be clarified. This thesis 

illustrates that early DNA strand damage induced by Ara-C progresses to double-strand DNA 

fragmentation associated with apoptosis in HL-60/neo cells, but the pathway by which this early 
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(potentially reparable) damage is converted to irreversible lethal double-strand DNA damage is 

not known. New insights into the molecular events of apoptosis, however, have come from the 

identification of a new category of components associated with the onset of apoptosis. These are 

cysteine protease cascades, which include the interleukin-l J3 (lL-l~) converting enzyme (ICE) 

family previously mentioned in the introduction of this thesis, and now its related proteins most 

recently described (440). 

Protease cascades and their inhibitors is a relatively new concept in the study of apoptosis 

but is not novel to human physiology. Coagulation is a complex and tightly regulated system in 

which the interaction of various proteolytic pathways culminate in a final common pathway 

resulting in the formation of a functional insoluble fibrin clot. Circulating plasma proteins first 

become activated upon contact with damaged vascular tissue, and their active forms in turn 

stimulate through enzymatic cleavage, the subsequent activation of several clotting factors 

from their inactive forms in an orderly manner (441). Antagonists of this dynamic system exist 

in order to maintain balance between blood flow and coagulation. Synthetic calcium chelators, 

which compete with the clotting factors which require Ca2
+ for their activation, are used ex vivo. 

Protein C and Protein S are vitamin-K-dependent polypeptides which neutralize factors V and 

VIII in their activated states, and may also activate fibrinolysis in an interrelated pathway (441). 

The most important specific anticoagulant, however, is antithrombin III, a serine protease 

inhibitor which preferentially binds to and neutralizes thrombin and other serine proteases in the 

coagulation cascade (441). 

Apoptosis is also described as being tightly regulated, and its orderly execution is now 

linked to protease cascade(s). As mentioned previously, cytotoxic T-lymphocytes and natural 

killer cells induce apoptosis in target cells by virtue of pore-forming proteins and serine 

proteases stored in their cytopJasmic granules. These proteases include granzyme B (or 

fragmentin-2), which can cleave proteins at aspartate (Asp) residues (34), and by itself, 

granzyme B is sufficient to induce apoptosis in target cells. The C. elegans cell death gene ced-3 

was recently found to have significant homology to the mammalian Ice gene (27), which 

converts its substrate, inactive pro-IL-I p, to its active fonn by cleavage of pro-IL-I J3, also at Asp 

residues. Overexpression of Ice in Rat-l fibroblasts was also demonstrated to cause apoptosis 

(30), further suggesting that proteolytic gene products can execute apoptosis. In addition, 
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cisplatin-induced apoptosis also induces expression of ICE in murine and human malignant 

glioma cells, and can be inhibited by the tetrapeptide ICE inhibitor Ac-YV AD .. cmk (442). 

However, ICE itself may not be responsible for the universal mediation of apoptosis, as 

demonstrated by the study by Kuido et al., in which lymphoid cells of ICE (-/-) deficient mice 

were still found to be sensitive to dexamethasone- or radiation-induced apoptosis (33). Other 

recently discovered proteases and ICE/ced-3 homo logs, however, may be involved in other 

pathways which lead to a final common induction of apoptosis: these include Nedd-2IIch-1, 

CPP32J3lYama, TxlIch-2, and Mch-2, each of which, like ICE, contain a conserved pentameric 

peptide QACRG, which includes an active cysteine site for its own cleavage and activation 

(reviewed in 34, 342). Each of these ICE family members have been shown to induce apoptosis 

in various cell types when individually overexpressed (reviewed in 34, 342). In neutrophils, 

granzyme B can also directly activate the ICE-like cysteine protease and zymogen pro­

CPP32J3Nama (443). Even in Drosophila, an ICE-like protease may be involved in apoptosis 

induced by the death effector REAPER (RPR), since ICE-like protease inhibitor Z-VAD-fmk 

abrogates its death activity (444). 

The ICE-like proteases, when activated, target specific downstream substrates, including 

poly(ADP-ribose) polymerase (PARP), U 1 small nuclear ribonucleoprotein, Lamin B 1, a-fodrin, 

topoisomerase I, lamins, and, most recently, ~actin and retinoblastoma protein (34, 445). Each 

of these have been demonstrated to undergo degradation due to activation of cysteine proteases 

when apoptosis is induced in various cells systems (reviewed in 26, 34, 446). For example, 

P ARP is cleaved at DEVD 216 - G 217, and the site which surrounds this area is similar to that 

site cleaved in pro-IL-I J3 by ICE (FEAD 27- G 28) (446, 447). This cleavage site may be similar 

in other substrates. Mashima et al. have subsequently demonstrated that the small peptide Z­

Asp-CH2-DBB, a selective inhibitor of the activity of ICE-family proteases, prevents apoptosis 

in U937 cells induced by Ara-C, VP-16, camptothecin, and adriamycin, by competing with the 

cleavage site in proteolysable substrates (448). In addition, Emoto et al. have found that the ICE 

family inhibitor YV AD blocks proteolytic activation of another substrate, protein kinase C 0, as 

well as subsequent intemucleosomal DNA fragmentation induced by ionizing radiation in U937 

cells (449). Furthennore, Bcl-2 overexpression in these cells also blocks these events (449), 

consistent with studies by Kondo et al (442). 
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Cleavage of poly (ADP-ribose) polymerase (P ARP) is an important specific event 

accomplished by an ICE-like protease at the onset of apoptosis (446). In HL-60 cells, Kaufmann 

et al. have demonstrated that incubation with a variety of chemotherapeutic agents including 

Ara-C, induces intemucleosomal DNA fragmentation, and is consistently accompanied by 

cleavage of 116-kD native PARP polypeptide to a 85-kD fragment as seen by Western blot 

(384), as well as 2S-29-kD fragment(s) also demonstrated by Soldatenkov et al (450). Kaufmann 

et al. describe P ARP as being involved in the repair of different types of DNA damage by virtue 

of its increased activity during the induction of single-strand and double-strand DNA breaks, as 

previously mentioned in Chapter Five. Its cleavage to an inactive form may contribute to the 

demise of HL-60 cells exposed to chemotherapeutic agents, y-irradiation, and protein synthesis 

inhibitors (384). Interestingly, Kaufmann et al. also showed that while 116-kD PARP is cleaved 

to a smaller 85-kD fragment after exposure of HL-60 cells to Ara-C, P ARP is maintained as a 

116-kD polypeptide in identically treated K562 cells, which are resistant to apoptosis (385). 

Recently, the ICE-like protease CPP32J3IYama, also known as apopain, was specifically 

demonstrated to catalyze the cleavage of PARP (reviewed in 447, 451, 452), and represents a 

step proximal to this molecular event recently described as a marker for the onset of apoptosis 

(385,450). ProCPP32BIYama is comprised of two subunits of mass 17 kD and 12 kD which are 

released when the proenzyme is activated by cleavage (447). CPP32J3N ama-induced cleavage 

of PARP has been shown to be specifically prevented by CnnA, an inhibitor of ICE encoded by 

the cowpox virus, and a member of the serpin family of protease inhibitors (453), which on its 

own can protect serum-deprived Ratl fibroblasts from apoptosis due to serum withdrawal when 

overexpressed (34). In addition, PARP can al~o be cleaved by a newly identified CPP32 

homologs. CPP321Mch2, or CMH 1, is another cysteine protease whose overexpression in COS 

cells induces apoptosis but is not associated with cleavage of the interleukin-l J3 precursor itself 

(454). Mch3 has also been recently isolated and has the highest homology to CPP32J3IY ama. It 

has been shown that upon cleavage, the 17 kDa subunit of CPP32 can form a heteromer with the 

12 kDa subunit of proMch3a., which, in tum, can also activate the degradation of PARP during 

apoptosis (455). The involvement of the CPP32 family of ICE-like proteases in drug-induced 

apoptosis is in to process of further clarification. 
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As an addendum to this dissertation, the question was asked, based on newly 

generated hypotheses, whether Bcl-2 has the ability to specifically block CPP32J3/Yama 

activation and PARP degradation associated with Ara-C-induced apoptosis in HL-60 cells. 

To this end, Figure 38 illustrates preliminary evidence for Bcl-2-mediated interference in 

proteolytic cascade(s) possibly engaged during Ara ... C-induced apoptosis. The top Western blot 

in Panel A shows that when HL-60/neo cells are exposed to IllDAC (lane 2), a 32 ... kD band 

corresponding to intact full-length pro .. CPP32J3Nama, decreases in intensity. Smaller species 

ranging from 20 to l1kD, as demonstrated by Tewari in BlAB cells undergoing anti-Fas­

induced apoptosis (411), or detected by Nicholson et al. (456), were not detected in this instance 

using the extraction and centrifugation technique listed in the legend. As documented in the 

literature, this active form of CPP32(3lYarna most recently associated with the induction of 

apoptosis is now capable of degrading its downstream target P ARP prior to the irreversible onset 

of DNA fragmentation and apoptosis. The Western blot presented in Figure 38, Panel B, 

demonstrates that HL-60/neo cells, which into subsequently undergo Ara-C-induced apoptosis, 

also show evidence for disappearance or degradation of 1 16-kD intact PARP into 85-kD smaller 

fragments in lane 2 as compared to control HL-60/neo (lane 1), similar to Kaufmann's findings 

(385). Identically treated HL-60IBcl-2 cells, however, do not show decrease of pro-Varna levels 

(Panel A, lane 4) or degradation ofPARP into smaller fragments (Panel B, lane 4), as compared 

to that seen in HL-60/neo cells. Parenthetically, the effect of HIDAC-induced Yarn a activation 

and its blockade by Bcl ... 2 overexpression was also studies at the RNA level. This places, for the 

first time, Bcl-2-mediated blockade of Ara-C-induced apoptosis distal to Ara-C-induced DNA 

damage but proximal to Yama activation, protease cascade induction and subsequent P ARP 

degradation just prior to endonucleolytic DNA fragmentation associated with apoptosis. This 

concept is confirmed in the March 1, 1996 publication by Chinnaiyan et a/. f in which lurkat cells 

overexpressing either Bcl .. 2 (or Bel-xL) inhibited staurosporine-induced Varna and ICE-like ICE­

LAP3 activation and subsequent PARP degradation (457). Furthermore, Boulakia et al. have 

presently demonstrated that Bcl-2 mediated suppression of adenovirus E 1 A-induced apoptosis 

occurs in conjunction with prevention of EIA-induced processing of pro-CPP32Narna and 

subsequent cleavage of PARP as well (458). Whether PARP degradation in the scenario 

presented in this thesis is also due to the activity of CPP32 homolog Mch3 or Mch31Y ama 

heterodimers (455) was not further addressed. 
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Given that CPP32J3IY ama is activated during chemotherapeutic drug-induced apoptosis, a 

further intriguing question still remains as to how nuclear DNA damage can trigger a 

cytoplasmic cascade of protease activation, whose amplification results in endonucleolytic DNA 

fragmentation. In the context of drug-induced apoptosis, the signal(s) which directly catalyze the 

induction of these protease cascades have yet to be identified. Conversely, an important question 

to address is how proteolytic cleavage of the components of these cytoplasmic cascades can 

ultimately result in the double-strand DNA fragmentation characteristic of apoptosis, consistent 

with inferences from the demonstration by Lazebnik et at. that cytoplasmic extracts of 

mitotically arrested cells can induce events of apoptosis in isolated nuclei (459). As described in 

the introduction to Chapter Five, PARP has been associated with DNA repair. Therefore its 

degradation by the cytoplasmic proteases may inhibit its repair activity. However, as is also 

mentioned in Chapter Five, PARP in its active fonn catalyzes the poly(ADP-ribosyl)ation of 

various nuclear polypeptides by conversion of NAD to nicotinamide and protein-linked ADP­

ribose polymers (385). How these additional poly(ADP-ribosyl) groups affect the targetted 

nuclear proteins may be variable. However, one important target for poly(ADP-ribosyl)ation is a 

Ca2
+ IMg2+ -dependent endonuclease. As early as 1975, it was described that poly(ADP­

rihosyl)ation of a purified Ca2
+ /Mg2+ -dependent endonuclease occurs readily, and inhibits its 

activity (460, 46 I). In addition, Nelipovich et al. reported that preincubation of thymocyte 

nuclei with NAD (the substrate for PARP) prevented Ca2
+ /Mg2+ -induced DNA degradation, and 

decreased endonuclease activity (462). Furthermore, this effect was reversed by increased 

concentrations of nicotinamide, which inhibits poly(ADP-ribose) polymerase (463). 

Schwartzman and Cidlowski suggest that the inhibition of PARP during the induction of 

apoptosis may be responsible for the activation of the Ca2
+ /Mg2+ -dependent endonuclease 

described here, and that in the absence of an apoptotic signal the endonuclease is kept in a 

repressed state due to the addition of poly (ADP-ribose) polymers to the enzyme by PARP (2). 

In addition, PARP has also been found to poly(ADP-ribosyl)ate histone HI in the early induction 

of apoptosis in UV -irradiated HL-60 cells (464), and may facilitate intemucleosomal DNA 

fragmentation by making nuclear chromatin more susceptible to cleavage by the putative 

. 2+ 2+ d endonuclease at its targets between the histone octamers. WhIle the Ca IMg -depen ent 

endonuclease or other endonuclease(s) responsible for the fragmentation of DNA associated with 

apoptosis have not yet been unequivocally identified, this proposal still remains a valid 

possibility to explain the onset of the final events of apoptosis. 
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Figure 39, therefore, illustrates a model for the proposed role of Bcl-2 in a protease 

cascade associated with apoptosis. Because Bcl-2 inhibits the progression of early DNA 

damage, in the case of Ara-C-induced apoptosis, for example, to double-strand DNA 

fragmentation, it is possible that it may function to keep the responsible endonuclease inactive 

by inhibiting the degradation of PARP. Inhibition of PARP degradation by Bcl-2 may be the 

result of Bcl .. 2-mediated inhibition of the conversion of a protease(s) such as CPP32J31Yama to 

its active form, and thus may ultimately keep the putative endonuclease in a repressed state. 

If PARP is not degraded in Bcl-2-overexpressing cells, it might be hypothesized that these 

cells have greater capacity for DNA repair. However, although intact PARP is suggested to 

allow DNA repair enzymes to access DNA breaks (385, 390), Bcl-2-overexpressing cells, which 

show blockade of PARP degradation, were shown in Chapter Five to have no absolute increased 

capacity for repair of Ara-C-induced DNA damage, even though· PARP itself has not been 

specifically implicated in repair of Ara-C-induced DNA damage. This further indicates that 

regardless of a cell's capacity for DNA repair, a critical irreversible switchpoint for apoptosis 

may exist separate from repair events. This irreversible pathway may lie in the induction of the 

protease cascade described above. This cascade may ultimately channel the final events of 

apoptosis, dependent upon inhibition of PARP-associated endonuclease derepression, rather than 

on inhibition of P ARP-associated DNA repair. 

Because the exact signaJ(s) which catalyze(s) the initial induction of the protease cascade is 

not known. The induction of the protease cascade may also be the result of an alternate signal 

not directly related to Ara-C DNA damage. Therefore, it also remains a possibility, that the 

progression of Ara-C-induced DNA damage to the final induction of apoptosis is not as direct, as 

depicted in such models as Figures 7, 36, and 39. The signal(s) leading to protease activation 

could possibly be due to Ara-C effects on ceramide generation, transcription factor activation, 

and/or protein kinase activation, as mentioned in Chapter One. These events may be due to 

Ara-C interaction with these alternate targets or due to cellular response to Ara-C-induced DNA 

damage, and represent points for further study and clarification. 
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E, Further speculations. 

The mechanism by which Bcl-2 mediates the inhibition of the protease cascade still 

needs to be addressed. Taking the above various proposed mechanisms into account, and given 

the subcellular residence of Bcl-2, which includes the nuclear membrane, the endoplasmic 

reticulum, and the outer mitochondrial membrane, a further model is given in Figure 40 which 

attempts to illustrate possible Bcl-2 function in the inhibition of apoptosis. Since studies have 

not been done which examine the location of Bcl-2 during exposure of leukemia cells to 

apoptotic stimuli, it is assumed that Bcl-2 renlains anchored in the described membranes of its 

residence. If Bcl-2 overexpression leads to an inhibition of the proteolytic cleavage of 

degradative CPP32~N ama in a cytoplasmic cascade, it is hypothesized that Bcl-2 may function 

universally in blocking the trafficking of a signal from damaged DNA from the nucleus to 

the cytoplasm. If so, this signal(s) which may be responsible for the induction of the protease 

cascade may not then be able to reach the zymogen pro-CPP32PIY ama, and thus P ARP will not 

be degraded. Ultimately, the Ca2
-+-/Mg2+ -dependent endonuclease will remain repressed. Bcl-2 

may therefore exist in a conformational state which may physically inhibit trafficking of ultimate 

apoptotic signals toward death effectors. This is partially supported by studies showing that Bcl-

2 overexpression prohibits translocation of cdk' s (142) or p53 (144) to the nucleus, conversely, 

and thus can build up in the cytoplasm during inhibition of apoptosis by Bcl-2. Phosphorylation 

of Bcl-2 may change its conformation and not allow Bcl-2 to perfonn its protective function. 

However, phosphorylation of Bcl-2 may occur only in certain cases, and may not be a universal 

effect of drug treatment, since Ara-C treatment has not been shown in this thesis or other studies 

to cause phosphorylation of Bcl-2. 

This model in Figure 40 is specific in that it includes the aspects of Ara-C-induced 

apoptosis studied in HL-60 cells. This model may be relevant for other drugs as well, since Bcl-

2 can block apoptosis induced by a wide variety of stimuli. The final death effectors involved in 

these processes may include different ICE family members in different cell lines, and different 

Bcl-2 family members may be utilized as well to block apoptosis in other systems, representing 

tissue-specific expressions of universal processes. If the apoptotic signal comes from alternate 

targets of Ara .. C action, however, the protective role of Bcl-2, given its residence in the 

previously described membranes, is not as obvious, especially since these alternate targets in the 

context of apoptosis after several hours' exposure to Ara-C has not been proven. Whether 
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nuclear envelope or the nuclear lamina disassembly concomitant with the onset of apoptosis 

(465) interferes with Bcl-2 function is also a consideration for the universality of this model. 

However, Bcl-2 has been shown to possess at least partial anti-apoptotic activity even if not 

anchored to intracellular membranes (77, 164), and may still be functional in the cytoplasm to 

impede access of apoptotic signals to the protease cascade(s). 

As stated previously, the ultimate goal of studies such as these presented in this 

dissertation is to target specific sites or events in Bcl-2-mediated inhibition of Ara-C­

induced apoptosis, in order to improve the antileukemic efficacy of Ara-C. The data and 

speculations presented in this dissertation hopefully provide further directions toward the 

ultimate elucidation of the mechanism of action of Bcl-2 at a distal event in the induction of 

apoptosis. This achievement will then provide opportunities to target the action of Bcl-2, and 

thus improve present chemotherapy treatments in leukemias and other cancers, by decreasing 

drug resistance due to Bcl-2 and other members of this new class of oncogenes which inhibit 

apoptosis. While the mechanism of action of Bcl-2 is still unknown, it is speculated at present 

that perhaps gene therapy, targetted to the functional domains for heterodimerization and proper 

action of Bcl-2 or its homoiogs, may be beneficial, by disrupting the proper formation of those 

dimers which may inh ibit the apoptotic process in leukemia cells whose eradication is desired. 

This may then be useful in regaining the maintenance of cell numbers in the bone marrow 

environment, which, as described by Reed, is normally regulated physiologically in achieiving a 

balance between cell proliferation and cell death (70). 
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FIGURE LEGENDS: 

Figure 35: Preliminary illustration of Bcl-2-mediated blockade of the progression of 
apoptosis induced by DNA damage. 

Figure 36: Preliminary illustration of possibilities for Bcl-2-mediated interference with 
known signalling events induced by Ara-C. 

Figure 37. Hyperinduction of for c-jun mRNA expressions by Northern blots in IDDAC­
treated HL-60IBcl-2 cells as compared with HIDAC-treated HL-60/neo cells; and increased 
c-myc mRNA expression in HL-60IBcl-2 cells. Total RNA was extracted from HL-60/neo or 
HL-60IBcl-2 clonal population B cells either untreated (lanes 1,3) or immediately following 
treatment \vith HIDAC for 4 hours (lanes 2,4) by the guanidinium thiocyanate-phenol ... 
chloroform method by Chomczynski et al. (466, 467), and 10 J..1.g per condition electrophoresed 
in 1.80/0 agaroselMOPS/formaldehyde gel as described in Chapter Three. Northern blots were 
hybridized with the following 32-P-labelled cDNA probes utilizing a previously described 
method (468): 

For Panel A, human c-jun was a 1.8-kb BamHIIEcoRV fragment purified from pBluescript 
SK( +), and was the kind gift of Or. Donald Kufe, Dana Farber Cancer Center, Boston, MA);. 

For Panel B, human c-myc was a 1.3-kb EcoRllClaI fragment purifies from pMC445, and 
was the kind gift of Dr. R. Dalla Favera, Columbia University, NY; 

For Panel C, human b-actin was a 600-bp EcoRllBamHI fragment purifies from pBluescript 
KSII( +), and was the kind gift of Dr. James S. Norris, Medical University of South Carolina, 
Charleston, SC). 

The blots are representative of experiments performed three times, each with similar results. 

Figure 38; Western blot analysis for Bcl-2-mediated inhibition of cleavage of pro­
CPP32f3/Yama and degradation of its target PARP. Total protein was extracted from 
untreated (lanes 1,3) or HIDAC (lanes 2,4) treated HL-60/neo (lanes 1,2) and HL-60IBcl-2 
clonal population B cells (lanes 3,4) utilizing an extraction buffer enriched with protease 
inhibitors (142.5 mM KCl, 5 mM MgC12, 10 mM HEPES, pH 7.2, 1 mM EGTA, 0.02% NP-40, 
0.2 mM PMSF [Sigma], 0.2 TIU/ml aprotinin, 0.7 mg/rot pepstatin, 1 mg/ml leupeptin [all from 
Sigma]). For Panel A, 20 ~g total protein from each condition was electrophoresed in 12.5% 
SOS-polyacrylamide gel and hybridized as described in the Western blotting method in Chapter 
Two with a mouse monoclonal anti-CPP32~/pro-Varna antibody (#C31720, Transduction 
Laboratories, Lexington, Kentucky, 1 :2000 dilution). For analysis of Ara-C-induced PARP 
degradation in Panel B, 50 J..lg total protein from each condition was electrophoresed in 7.5% 
SDS-polyacrylamide gel and hybridized with rabbit polyclonal antiserum to PARP (the kind gift 
of Dr. Ernest Kun, San Francisco State University, Tiburon, CA, Octamer, Inc., Mill Valley, CA; 
1 :2000 dilution). A resultant nonspecific 55 kD band after polyclonal anti-PARP antiserum is 
also displayed in Panel C to demonstrate equal loading of protein sanlples. 

The results are representative of three experiments, each with similar results. 

Figure 39: Proposed model for Bcl-2-mediated blockade of protease cascade(s) preceding 
the onset of apoptosis. 
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Figure 40: Proposed model for Bcl-2 function in blocking Ara-C-induced apoptosis in Illr 
60 cells. While Bcl-2 is known to reside in the nuclear envelope, the endoplasmic reticulum 
(ER), and the outer mitochondrial membrane, it is proposed that the more significant location for 
Bcl-2 in interfering with Ara-C-induced apoptosis is that of the nuclear envelope near nuclear 
pore complexes (NPC's), since Ca2

+ fluxes observed at the ER and mitochondria are not known 
to be involved in Ara-C-induced apoptosis. Bcl-2 may function in impeding the trafficking of 
either: (a) an apoptotic signal resulting from nuclear DNA damage to its effectors in the 
cytoplasm which activate the protease cascade; or (b) activated Varna from the cytoplasm as it 
targets its nuclear substrate poly(ADP ... ribose) polymerase (PARP). Hypothesis (a) may be more 
likely since the cleavage of Varna to its smaller active form is also blocked by Bcl-2, indicating 
the Bcl-2-mediated blockade occurs proximal to the activation of the protease cascade. 
Simultaneously, Bcl-2 may be promoting cell survival by sequestering Bax through 
heterodimerization. 
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